159 research outputs found

    Temporal Variability of Tungsten and Cobalt in Fallon, Nevada

    Get PDF
    BACKGROUND: Since 1997, Fallon, Nevada, has experienced a cluster of childhood leukemia that has been declared “one of the most unique clusters of childhood cancer ever reported.” Multiple environmental studies have shown airborne tungsten and cobalt to be elevated within Fallon, but the question remains: Have these metals changed through time in correspondence with the onset of the leukemia cluster? METHODS: We used dendrochemistry, the study of element concentrations through time in tree rings, in Fallon to assess temporal variability of airborne tungsten and cobalt since the late 1980s. The techniques used in Fallon were also tested in a different town (Sweet Home, OR) that has airborne tungsten from a known source. RESULTS: The Sweet Home test case confirms the accuracy of dendrochemistry for showing temporal variability of environmental tungsten. Given that dendrochemistry works for tungsten, tree-ring chemistry shows that tungsten increased in Fallon relative to nearby comparison towns beginning by the mid-1990s, slightly before the onset of the cluster, and cobalt has been high throughout the last ~ 15 years. Other metals do not show trends through time in Fallon. DISCUSSION: Results in Fallon suggest a temporal correspondence between the onset of excessive childhood leukemia and elevated levels of tungsten and cobalt. Although environmental data alone cannot directly link childhood leukemia with exposure to metals, research by others has shown that combined exposure to tungsten and cobalt can be carcinogenic to humans. CONCLUSION: Continued biomedical research is warranted to directly test for linkage between childhood leukemia and tungsten and cobalt

    Characterization of surface decorations in Prehispanic archaeological ceramics by Raman spectroscopy, FTIR, XRD and XRF

    Get PDF
    Non-invasive Raman microspectroscopy, FTIR, μXRD and XRF were used to identify the materials present in the black, red, and white surface decorations in selected pottery wares from two Prehispanic archaeological sites in Northwestern (NW) Argentina (AD 900?1530). The iron manganese spinel jacobsite, MnFe2O4, was found to be the main component of two of the fired black decorations analyzed, while hematite and amorphous silicates were found to be present in the red and white fired decorations, respectively. This is the first study, to our knowledge, that firmly identifies jacobsite in black decorations in Prehispanic archaeological ceramics. In fragments recovered from one site, a carbon-based black pigment was identified while gypsum was observed in the recessed areas of decorative surface incisions. Gypsum, potassium nitrate and halite, most likely deposited during burial, were observed on the surface of some of the fragments analyzed. The results are discussed in the context of the technological processes involved and are compared to compositions previously reported for decorations in ceramic objects from NW Argentina.Fil: Centeno, Silvia A.. The Metropolitan Museum of Art; Estados UnidosFil: Williams, Veronica Isabel. Universidad de Buenos Aires. Facultad de Filosofía y Letras. Instituto de Arqueología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Little, Nicole C.. Museum Conservation Institute; Estados UnidosFil: Speakman, Robert J.. Museum Conservation Institute; Estados Unido

    Chemical characterization of tin-lead glazed ceramics from Aragon (Spain) by neutron activation analysis

    Get PDF
    Majolica pottery was the most characteristic tableware produced in Spain during the Medieval and Renaissance periods. A study of the three main production centers in the historical region of Aragon during Middle Ages and Renaissance was conducted on a set of 71 samples. The samples were analyzed by instrumental neutron activation analysis (INAA), and the resulting data were interpreted using an array of multivariate statistical procedures. Our results show a clear discrimination among different production centers allowing a reliable provenance attribution of ceramic sherds from the Aragonese workshops

    Las cerámicas vidriadas decoradas del Convento de San Francisco de Las Palmas de Gran Canaria. Una aproximación a su estudio arqueométrico.

    Get PDF
    [cas]Para el presente estudio fueron seleccionadas 41 cerámicas procedentes del fondo de El Museo Canario y correspondientes a materiales de las excavaciones arqueológicas realizadas en eí solar del antiguo convento de San Francisco de Las Palmas de Gran Canaria. Todos los individuos fueron analizados por fluoresceiicia de rayos X (FRX) y difracción de rayos X (DRX), complementándose el estudio analítico con una selección de cerámicas estudiadas mediante el ariálisis por activación neutro nica (AAN). Los resultados han permitido demostrar que la mayor parte de las cerámicas estudiadas presentan una proveniencia de la ciudad de Sevilla. No obstante, también se han hallado otras ceráinicas que parecen corresponder a otros centros productores, tanto españoles como italianos y portugueses. De esta manera, se demuestra la relativa heterogeneidad de las iínportaciohes cerá- micas del antiguo convento de San Francisco.[eng]In order to asses the provenance of the majolica production from the Iberian Peninsula in the Canary Island as a first step for the trade with America, a set of 41 majolica individuals has been sampled from the archaeological site of El Antiguo Convento de San Francisco (Las Palmas de Gran Canaria). Individuals have been studied by means of X-Ray Fluorescence (XRF), Neutron Activation Analysis (NAA) and X-Ray Diffraction (XRD). The results show an important group matching our reference group from Seville, in agreement with the historical record. Chemical data also reveals individuals whose provenance corresponds to other production centres of the Iberian Peninsula. Possible Italian and Dutch productions have also been identified. All these results confirm the relative heterogeneity of the range of imported majolica by the convent of San Francisco

    Tungsten and Cobalt: Sheppard et al. Respond

    Get PDF

    Aerobic capacity, activity levels and daily energy expenditure in male and female adolescents of the kenyan nandi sub-group

    Get PDF
    The relative importance of genetic and socio-cultural influences contributing to the success of east Africans in endurance athletics remains unknown in part because the pre-training phenotype of this population remains incompletely assessed. Here cardiopulmonary fitness, physical activity levels, distance travelled to school and daily energy expenditure in 15 habitually active male (13.9±1.6 years) and 15 habitually active female (13.9±1.2) adolescents from a rural Nandi primary school are assessed. Aerobic capacity ([Formula: see text]) was evaluated during two maximal discontinuous incremental exercise tests; physical activity using accelerometry combined with a global positioning system; and energy expenditure using the doubly labelled water method. The [Formula: see text] of the male and female adolescents were 73.9±5.7 ml(.) kg(-1.) min(-1) and 61.5±6.3 ml(.) kg(-1.) min(-1), respectively. Total time spent in sedentary, light, moderate and vigorous physical activities per day was 406±63 min (50% of total monitored time), 244±56 min (30%), 75±18 min (9%) and 82±30 min (10%). Average total daily distance travelled to and from school was 7.5±3.0 km (0.8-13.4 km). Mean daily energy expenditure, activity-induced energy expenditure and physical activity level was 12.2±3.4 MJ(.) day(-1), 5.4±3.0 MJ(.) day(-1) and 2.2±0.6. 70.6% of the variation in [Formula: see text] was explained by sex (partial R(2) = 54.7%) and body mass index (partial R(2) = 15.9%). Energy expenditure and physical activity variables did not predict variation in [Formula: see text] once sex had been accounted for. The highly active and energy-demanding lifestyle of rural Kenyan adolescents may account for their exceptional aerobic fitness and collectively prime them for later training and athletic success

    Caloric Restriction Alters the Metabolic Response to a Mixed-Meal: Results from a Randomized, Controlled Trial

    Get PDF
    OBJECTIVES: To determine if caloric restriction (CR) would cause changes in plasma metabolic intermediates in response to a mixed meal, suggestive of changes in the capacity to adapt fuel oxidation to fuel availability or metabolic flexibility, and to determine how any such changes relate to insulin sensitivity (S(I)). METHODS: Forty-six volunteers were randomized to a weight maintenance diet (Control), 25% CR, or 12.5% CR plus 12.5% energy deficit from structured aerobic exercise (CR+EX), or a liquid calorie diet (890 kcal/d until 15% reduction in body weight)for six months. Fasting and postprandial plasma samples were obtained at baseline, three, and six months. A targeted mass spectrometry-based platform was used to measure concentrations of individual free fatty acids (FFA), amino acids (AA), and acylcarnitines (AC). S(I) was measured with an intravenous glucose tolerance test. RESULTS: Over three and six months, there were significantly larger differences in fasting-to-postprandial (FPP) concentrations of medium and long chain AC (byproducts of FA oxidation) in the CR relative to Control and a tendency for the same in CR+EX (CR-3 month P = 0.02; CR-6 month P = 0.002; CR+EX-3 month P = 0.09; CR+EX-6 month P = 0.08). After three months of CR, there was a trend towards a larger difference in FPP FFA concentrations (P = 0.07; CR-3 month P = 0.08). Time-varying differences in FPP concentrations of AC and AA were independently related to time-varying S(I) (P<0.05 for both). CONCLUSIONS: Based on changes in intermediates of FA oxidation following a food challenge, CR imparted improvements in metabolic flexibility that correlated with improvements in S(I). TRIAL REGISTRATION: ClinicalTrials.gov NCT00099151

    Parallel Evolution of Auditory Genes for Echolocation in Bats and Toothed Whales

    Get PDF
    The ability of bats and toothed whales to echolocate is a remarkable case of convergent evolution. Previous genetic studies have documented parallel evolution of nucleotide sequences in Prestin and KCNQ4, both of which are associated with voltage motility during the cochlear amplification of signals. Echolocation involves complex mechanisms. The most important factors include cochlear amplification, nerve transmission, and signal re-coding. Herein, we screen three genes that play different roles in this auditory system. Cadherin 23 (Cdh23) and its ligand, protocadherin 15 (Pcdh15), are essential for bundling motility in the sensory hair. Otoferlin (Otof) responds to nerve signal transmission in the auditory inner hair cell. Signals of parallel evolution occur in all three genes in the three groups of echolocators—two groups of bats (Yangochiroptera and Rhinolophoidea) plus the dolphin. Significant signals of positive selection also occur in Cdh23 in the Rhinolophoidea and dolphin, and Pcdh15 in Yangochiroptera. In addition, adult echolocating bats have higher levels of Otof expression in the auditory cortex than do their embryos and non-echolocation bats. Cdh23 and Pcdh15 encode the upper and lower parts of tip-links, and both genes show signals of convergent evolution and positive selection in echolocators, implying that they may co-evolve to optimize cochlear amplification. Convergent evolution and expression patterns of Otof suggest the potential role of nerve and brain in echolocation. Our synthesis of gene sequence and gene expression analyses reveals that positive selection, parallel evolution, and perhaps co-evolution and gene expression affect multiple hearing genes that play different roles in audition, including voltage and bundle motility in cochlear amplification, nerve transmission, and brain function

    Human total, basal and activity energy expenditures are independent of ambient environmental temperature

    Get PDF
    Acknowledgments The DLW database, which can be found at https://www.dlwdatabase.org, is hosted by the International Atomic Energy Agency (IAEA) and generously supported by Taiyo Nippon Sanso and SERCON . We are grateful to the IAEA and these companies for their support. XYZ was supported by the Chinese Academy of Sciences (grant CAS 153E11KYSB20190045 to J.R.S.), and the database was also supported by the US National Science Foundation (grant BCS-1824466 to H.P.). The funders played no role in the content of this manuscript.Peer reviewedPublisher PD

    Neurobeachin, a Regulator of Synaptic Protein Targeting, Is Associated with Body Fat Mass and Feeding Behavior in Mice and Body-Mass Index in Humans

    Get PDF
    Neurobeachin (Nbea) regulates neuronal membrane protein trafficking and is required for the development and functioning of central and neuromuscular synapses. In homozygous knockout (KO) mice, Nbea deficiency causes perinatal death. Here, we report that heterozygous KO mice haploinsufficient for Nbea have higher body weight due to increased adipose tissue mass. In several feeding paradigms, heterozygous KO mice consumed more food than wild-type (WT) controls, and this consumption was primarily driven by calories rather than palatability. Expression analysis of feeding-related genes in the hypothalamus and brainstem with real-time PCR showed differential expression of a subset of neuropeptide or neuropeptide receptor mRNAs between WT and Nbea+/− mice in the sated state and in response to food deprivation, but not to feeding reward. In humans, we identified two intronic NBEA single-nucleotide polymorphisms (SNPs) that are significantly associated with body-mass index (BMI) in adult and juvenile cohorts. Overall, data obtained in mice and humans suggest that variation of Nbea abundance or activity critically affects body weight, presumably by influencing the activity of feeding-related neural circuits. Our study emphasizes the importance of neural mechanisms in body weight control and points out NBEA as a potential risk gene in human obesity
    corecore