335 research outputs found

    Semiclassical time--dependent propagation in three dimensions: How accurate is it for a Coulomb potential?

    Full text link
    A unified semiclassical time propagator is used to calculate the semiclassical time-correlation function in three cartesian dimensions for a particle moving in an attractive Coulomb potential. It is demonstrated that under these conditions the singularity of the potential does not cause any difficulties and the Coulomb interaction can be treated as any other non-singular potential. Moreover, by virtue of our three-dimensional calculation, we can explain the discrepancies between previous semiclassical and quantum results obtained for the one-dimensional radial Coulomb problem.Comment: 8 pages, 4 figures (EPS

    Explant-derived human dental pulp stem cells enhance differentiation and proliferation potentials

    Full text link
    Numerous stem cell niches are present in the different tissues and organs of the adult human body. Among these tissues, dental pulp, entrapped within the 'sealed niche' of the pulp chamber, is an extremely rich site for collecting stem cells. In this study, we demonstrate that the isolation of human dental pulp stem cells by the explants culture method (hD-DPSCs) allows the recovery of a population of dental mesenchymal stem cells that exhibit an elevated proliferation potential. Moreover, we highlight that hD-DPSCs are not only capable of differentiating into osteoblasts and chondrocytes but are also able to switch their genetic programme when co-cultured with murine myoblasts. High levels of MyoD expression were detected, indicating that muscle-specific genes in dental pulp cells can be turned on through myogenic fusion, confirming thus their multipotency. A perivascular niche may be the potential source of hD-DPSCs, as suggested by the consistent Ca(2+) release from these cells in response to endothelin-1 (ET-1) treatment, which is also able to significantly increase cell proliferation. Moreover, response to ET-1 has been found to be superior in hD-DPSCs than in DPSCs, probably due to the isolation method that promotes release of stem/progenitor cells from perivascular structures. The ability to isolate, expand and direct the differentiation of hD-DPSCs into several lineages, mainly towards myogenesis, offers an opportunity for the study of events associated with cell commitment and differentiation. Therefore, hD-DPSCs display enhanced differentiation abilities when compared to DPSCs, and this might be of relevance for their use in therapy

    An evaluation of metal removal during wastewater treatment: The potential to achieve more stringent final effluent standards

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2011 Taylor & Francis.Metals are of particular importance in relation to water quality, and concern regarding the impact of these contaminants on biodiversity is being encapsulated within the latest water-related legislation such as the Water Framework Directive in Europe and criteria revisions to the Clean Water Act in the United States. This review undertakes an evaluation of the potential of 2-stage wastewater treatment consisting of primary sedimentation and biological treatment in the form of activated sludge processes, to meet more stringent discharge consents that are likely to be introduced as a consequence. The legislation, sources of metals, and mechanisms responsible for their removal are discussed, to elucidate possible pathways by which the performance of conventional processes may be optimized or enhanced. Improvements in effluent quality, achievable by reducing concentrations of suspended solids or biochemical oxygen demand, may also reduce metal concentrations although meeting possible requirements for the removal of copper my be challenging

    Differential impact of LPG-and PG-deficient Leishmania major mutants on the immune response of human dendritic cells

    Get PDF
    <div><p>Background</p><p><i>Leishmania major</i> infection induces robust interleukin-12 (IL12) production in human dendritic cells (hDC), ultimately resulting in Th1-mediated immunity and clinical resolution. The surface of <i>Leishmania</i> parasites is covered in a dense glycocalyx consisting of primarily lipophosphoglycan (LPG) and other phosphoglycan-containing molecules (PGs), making these glycoconjugates the likely pathogen-associated molecular patterns (PAMPS) responsible for IL12 induction.</p><p>Methodology/Principal Findings</p><p>Here we explored the role of parasite glycoconjugates on the hDC IL12 response by generating <i>L</i>. <i>major</i> Friedlin V1 mutants defective in LPG alone, (FV1 <i>lpg1-</i>), or generally deficient for all PGs, (FV1 <i>lpg2-</i>). Infection with metacyclic, infective stage, <i>L</i>. <i>major</i> or purified LPG induced high levels of <i>IL12B</i> subunit gene transcripts in hDCs, which was abrogated with FV1 <i>lpg1-</i> infections. In contrast, hDC infections with FV1 <i>lpg2-</i> displayed increased <i>IL12B</i> expression, suggesting other PG-related/<i>LPG2</i> dependent molecules may act to dampen the immune response. Global transcriptional profiling comparing WT, FV1 <i>lpg1-</i>, FV1 <i>lpg2-</i> infections revealed that FV1 <i>lpg1-</i> mutants entered hDCs in a silent fashion as indicated by repression of gene expression. Transcription factor binding site analysis suggests that LPG recognition by hDCs induces IL-12 in a signaling cascade resulting in Nuclear Factor κ B (NFκB) and Interferon Regulatory Factor (IRF) mediated transcription.</p><p>Conclusions/Significance</p><p>These data suggest that <i>L</i>. <i>major</i> LPG is a major PAMP recognized by hDC to induce IL12-mediated protective immunity and that there is a complex interplay between PG-baring <i>Leishmania</i> surface glycoconjugates that result in modulation of host cellular IL12.</p></div

    Partitioning clustering algorithms for protein sequence data sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-sequencing projects are currently producing an enormous amount of new sequences and cause the rapid increasing of protein sequence databases. The unsupervised classification of these data into functional groups or families, clustering, has become one of the principal research objectives in structural and functional genomics. Computer programs to automatically and accurately classify sequences into families become a necessity. A significant number of methods have addressed the clustering of protein sequences and most of them can be categorized in three major groups: hierarchical, graph-based and partitioning methods. Among the various sequence clustering methods in literature, hierarchical and graph-based approaches have been widely used. Although partitioning clustering techniques are extremely used in other fields, few applications have been found in the field of protein sequence clustering. It is not fully demonstrated if partitioning methods can be applied to protein sequence data and if these methods can be efficient compared to the published clustering methods.</p> <p>Methods</p> <p>We developed four partitioning clustering approaches using Smith-Waterman local-alignment algorithm to determine pair-wise similarities of sequences. Four different sets of protein sequences were used as evaluation data sets for the proposed methods.</p> <p>Results</p> <p>We show that these methods outperform several other published clustering methods in terms of correctly predicting a classifier and especially in terms of the correctness of the provided prediction. The software is available to academic users from the authors upon request.</p

    Human Dental Pulp Stem Cells Hook into Biocoral Scaffold Forming an Engineered Biocomplex

    Get PDF
    The aim of this study was to evaluate the behavior of human Dental Pulp Stem Cells (DPSCs), as well as human osteoblasts, when challenged on a Biocoral scaffold, which is a porous natural hydroxyapatite. For this purpose, human DPSCs were seeded onto a three-dimensional (3D) Biocoral scaffold or on flask surface (control). Either normal or rotative (3D) cultures were performed. Scanning electron microscopic analyses, at 8, 24 and 48 h of culture showed that cells did not adhere on the external surface, but moved into the cavities inside the Biocoral structure. After 7, 15 and 30 days of culture, morphological and molecular analyses suggested that the Biocoral scaffold leads DPSCs to hook into the cavities where these cells quickly start to secrete the extra cellular matrix (ECM) and differentiate into osteoblasts. Control human osteoblasts also moved into the internal cavities where they secreted the ECM. Histological sections revealed a diffuse bone formation inside the Biocoral samples seeded with DPSCs or human osteoblasts, where the original scaffold and the new secreted biomaterial were completely integrated and cells were found within the remaining cavities. In addition, RT-PCR analyses showed a significant increase of osteoblast-related gene expression and, above all, of those genes highly expressed in mineralized tissues, including osteocalcin, OPN and BSP. Furthermore, the effects on the interaction between osteogenesis and angiogenesis were observed and substantiated by ELISA assays. Taken together, our results provide clear evidence that DPSCs differentiated into osteoblasts, forming a biocomplex made of Biocoral, ECM and differentiated cells

    Scaling-Up of Dental Pulp Stem Cells Isolated from Multiple Niches

    Get PDF
    Dental pulp (DP) can be extracted from child’s primary teeth (deciduous), whose loss occurs spontaneously by about 5 to 12 years. Thus, DP presents an easy accessible source of stem cells without ethical concerns. Substantial quantities of stem cells of an excellent quality and at early (2–5) passages are necessary for clinical use, which currently is a problem for use of adult stem cells. Herein, DPs were cultured generating stem cells at least during six months through multiple mechanical transfers into a new culture dish every 3–4 days. We compared stem cells isolated from the same DP before (early population, EP) and six months after several mechanical transfers (late population, LP). No changes, in both EP and LP, were observed in morphology, expression of stem cells markers (nestin, vimentin, fibronectin, SH2, SH3 and Oct3/4), chondrogenic and myogenic differentiation potential, even after cryopreservation. Six hours after DP extraction and in vitro plating, rare 5-bromo-2′-deoxyuridine (BrdU) positive cells were observed in pulp central part. After 72 hours, BrdU positive cells increased in number and were found in DP periphery, thus originating a multicellular population of stem cells of high purity. Multiple stem cell niches were identified in different zones of DP, because abundant expression of nestin, vimentin and Oct3/4 proteins was observed, while STRO-1 protein localization was restricted to perivascular niche. Our finding is of importance for the future of stem cell therapies, providing scaling-up of stem cells at early passages with minimum risk of losing their “stemness”

    Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages

    Get PDF
    Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these activated macrophages are found to induce phagosome maturation when infected with pathogenic Leishmania donovani. Increased co-localization of carboxyfluorescein succinimidyl ester labeled pathogenic L. donovani with Lysosome was found. Moreover, increased co-localization was observed between pathogenic L. donovani and late phagosomal markers viz. Rab7, Lysosomal Associated Membrane Protein 1, Cathepsin D, Rab9, and V-ATPase which indicate phagosome maturation. It was also observed that inhibition of V-type ATPase caused significant hindrance in attenuated Leishmania induced phagosome maturation. Finally, it was confirmed that p38 MAPK is the key player in acidification and maturation of phagosome in attenuated Leishmania strain preexposed macrophages. To our knowledge, this study for the first time reported an approach to induce phagosome maturation in L. donovani infected macrophages which could potentiate short-term prophylactic response in futur
    corecore