99 research outputs found
Combining Geostatistics and Remote Sensing Data to Improve Spatiotemporal Analysis of Precipitation
The wide availability of satellite data from many distributors in different domains of science has provided the opportunity for the development of new and improved methodologies to aid the analysis of environmental problems and to support more reliable estimations and forecasts. Moreover, the rapid development of specialized technologies in satellite instruments provides the opportunity to obtain a wide spectrum of various measurements. The purpose of this research is to use publicly available remote sensing product data computed from geostationary, polar and near-polar satellites and radar to improve space–time modeling and prediction of precipitation on Crete island in Greece. The proposed space–time kriging method carries out the fusion of remote sensing data with data from ground stations that monitor precipitation during the hydrological period 2009/10–2017/18. Precipitation observations are useful for water resources, flood and drought management studies. However, monitoring stations are usually sparse in regions with complex terrain, are clustered in valleys, and often have missing data. Satellite precipitation data are an attractive alternative to observations. The fusion of the datasets in terms of the space–time residual kriging method exploits the auxiliary satellite information and aids in the accurate and reliable estimation of precipitation rates at ungauged locations. In addition, it represents an alternative option for the improved modeling of precipitation variations in space and time. The obtained results were compared with the outcomes of similar works in the study area
Optic nerve sheath meningioma: a case report
A case of a 75-year old male with right-sided exopthalmos is presented. Outside proptosis of the right eye was initially observed 6 years ago. Opthalmological and endocrinological clinical examination as well as laboratory tests revealed no pathology from optic nerve disc, optic bulb and thyroid related hormones. MRI study demonstrated an optic nerve meningioma. The key imaging findings and the differential diagnosis were discussed in this present paper
Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph
Recent tests of a single module of the Jagiellonian Positron Emission
Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips
have proven its applicability for the detection of annihilation quanta (0.511
MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved
resolution is almost by a factor of two better with respect to the current
TOF-PET detectors and it can still be improved since, as it is shown in this
article, the intrinsic limit of time resolution for the determination of time
of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much
lower. As the major point of the article, a method allowing to record
timestamps of several photons, at two ends of the scintillator strip, by means
of matrix of silicon photomultipliers (SiPM) is introduced. As a result of
simulations, conducted with the number of SiPM varying from 4 to 42, it is
shown that the improvement of timing resolution saturates with the growing
number of photomultipliers, and that the 2 x 5 configuration at two ends
allowing to read twenty timestamps, constitutes an optimal solution. The
conducted simulations accounted for the emission time distribution, photon
transport and absorption inside the scintillator, as well as quantum efficiency
and transit time spread of photosensors, and were checked based on the
experimental results. Application of the 2 x 5 matrix of SiPM allows for
achieving the coincidence resolving time in positron emission tomography of
0.170 ns for 15 cm axial field-of-view (AFOV) and 0.365 ns
for 100 cm AFOV. The results open perspectives for construction of a
cost-effective TOF-PET scanner with significantly better TOF resolution and
larger AFOV with respect to the current TOF-PET modalities.Comment: To be published in Phys. Med. Biol. (26 pages, 17 figures
Recommended from our members
A needs assessment study for optimising prescribing practice in secondary care junior doctors: the Antibiotic Prescribing Education among Doctors (APED).
BACKGROUND: Appropriate antimicrobial prescribing is essential for patient care, yet up to half of antimicrobial prescriptions written in the UK are sub-optimal. Improving prescriber education has recently been promoted as a mechanism to optimise antimicrobial use, but identification of key learning objectives to facilitate this is so far lacking. Using qualitative methods we investigated junior doctor knowledge, attitudes, and behaviours around antimicrobial prescribing to identify key areas to address in future educational programmes.
METHODS: A cross-sectional survey of qualified doctors in training in West London was undertaken exploring antimicrobial prescribing practices and educational needs.
RESULTS: Among 140 junior doctors from 5 London hospitals, a third (34 %) reported prescribing primarily unsupervised, and two thirds (67 %) reported difficulties obtaining prescribing support outside of hours. 20 % stated not feeling confident in writing an antimicrobial prescription, but confidence was increased through having confirmatory diagnostic results (24) and obtaining advice from a senior doctor (26 %); whether this senior was from their own specialty, or an infection-specialist, varied significantly (p < 0.01) by experience. Only a small percentage (5-13 %; depending on number of years post-qualification) of participants stated their previous antimicrobial education was effective. 60 % of those in their first year post qualification reported wanting further education in antimicrobial prescribing, rising to 74 % among more experienced junior doctors. Specific areas of educational need identified were (i) principles of antimicrobial prescribing, (ii) diagnosis of infections, (iii) clinical review of patients with infections, (iv) prescribing in the context of antimicrobial resistance, and (v) laboratory testing and test results.
CONCLUSIONS: A significant proportion of junior doctors report lone prescribing of antimicrobials in the context of low self-perceived confidence and knowledge in this field, and frequent difficulty in accessing help when necessary. Innovative training, targeting five specific areas identified through this needs assessment, is urgently needed by junior doctors practising in secondary care
Application of Silicon Photomultipliers to Positron Emission Tomography
Historically, positron emission tomography (PET) systems have been based on scintillation crystals coupled to photomultipliers tubes (PMTs). However, the limited quantum efficiency, bulkiness, and relatively high cost per unit surface area of PMTs, along with the growth of new applications for PET, offers opportunities for other photodetectors. Among these, small-animal scanners, hybrid PET/MRI systems, and incorporation of time-of-flight information are of particular interest and require low-cost, compact, fast, and magnetic field compatible photodetectors. With high quantum efficiency and compact structure, avalanche photodiodes (APDs) overcome several of the drawbacks of PMTs, but this is offset by degraded signal-to-noise and timing properties. Silicon photomultipliers (SiPMs) offer an alternative solution, combining many of the advantages of PMTs and APDs. They have high gain, excellent timing properties and are insensitive to magnetic fields. At the present time, SiPM technology is rapidly developing and therefore an investigation into optimal design and operating conditions is underway together with detailed characterization of SiPM-based PET detectors. Published data are extremely promising and show good energy and timing resolution, as well as the ability to decode small scintillator arrays. SiPMs clearly have the potential to be the photodetector of choice for some, or even perhaps most, PET systems
Safety of intravenous ferric carboxymaltose versus oral iron in patients with nondialysis-dependent CKD: an analysis of the 1-year FIND-CKD trial.
Background: The evidence base regarding the safety of intravenous (IV) iron therapy in patients with chronic kidney disease (CKD) is incomplete and largely based on small studies of relatively short duration. Methods: FIND-CKD (ClinicalTrials.gov number NCT00994318) was a 1-year, open-label, multicenter, prospective study of patients with nondialysis-dependent CKD, anemia and iron deficiency randomized (1:1:2) to IV ferric carboxymaltose (FCM), targeting higher (400-600 µg/L) or lower (100-200 µg/L) ferritin, or oral iron. A post hoc analysis of adverse event rates per 100 patient-years was performed to assess the safety of FCM versus oral iron over an extended period. Results: The safety population included 616 patients. The incidence of one or more adverse events was 91.0, 100.0 and 105.0 per 100 patient-years in the high ferritin FCM, low ferritin FCM and oral iron groups, respectively. The incidence of adverse events with a suspected relation to study drug was 15.9, 17.8 and 36.7 per 100 patient-years in the three groups; for serious adverse events, the incidence was 28.2, 27.9 and 24.3 per 100 patient-years. The incidence of cardiac disorders and infections was similar between groups. At least one ferritin level ≥800 µg/L occurred in 26.6% of high ferritin FCM patients, with no associated increase in adverse events. No patient with ferritin ≥800 µg/L discontinued the study drug due to adverse events. Estimated glomerular filtration rate remained the stable in all groups. Conclusions: These results further support the conclusion that correction of iron deficiency anemia with IV FCM is safe in patients with nondialysis-dependent CKD
- …