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Abstract: The wide availability of satellite data from many distributors in different domains of
science has provided the opportunity for the development of new and improved methodologies to
aid the analysis of environmental problems and to support more reliable estimations and forecasts.
Moreover, the rapid development of specialized technologies in satellite instruments provides the
opportunity to obtain a wide spectrum of various measurements. The purpose of this research
is to use publicly available remote sensing product data computed from geostationary, polar and
near-polar satellites and radar to improve space–time modeling and prediction of precipitation on
Crete island in Greece. The proposed space–time kriging method carries out the fusion of remote
sensing data with data from ground stations that monitor precipitation during the hydrological
period 2009/10–2017/18. Precipitation observations are useful for water resources, flood and drought
management studies. However, monitoring stations are usually sparse in regions with complex
terrain, are clustered in valleys, and often have missing data. Satellite precipitation data are an
attractive alternative to observations. The fusion of the datasets in terms of the space–time residual
kriging method exploits the auxiliary satellite information and aids in the accurate and reliable
estimation of precipitation rates at ungauged locations. In addition, it represents an alternative
option for the improved modeling of precipitation variations in space and time. The obtained results
were compared with the outcomes of similar works in the study area.

Keywords: satellite data; geostatistics; space–time residual kriging; machine learning; sum-metric

1. Introduction

Nowadays, remote sensors such as satellites located in a geostationary, medium or
low Earth orbit have multiple applications in innovative research and monitoring Earth
processes. Additionally, Light Detection and Ranging (LiDAR) sensors or other radars
also have been applied in a wide spectrum of disciplines, e.g., in environmental studies to
support leaf area index (LAI) estimation by using LiDAR height and intensity data [1], in
traffic emission, and to estimate vehicle speeds [2] or to generate more detailed 3D building
models from LiDAR scanning [3]. The accuracy of the measurements gives us the oppor-
tunity to achieve a global coverage with a resolution of up to several dozen centimeters.
This is possible thanks to increasingly effective instruments mounted in the next series of
satellites, caused by the dynamic development of technology and permanent investments
in the space industry. Satellite data have a wide range of applications in domains such as
forestry, agriculture, land management, object detection, military, environment, geology,
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etc. One of the most important areas of application is hydrology. Based on information
from satellite instruments and enhanced by artificial intelligence (AI) algorithms, it is
possible to extract information and to calculate precipitation rates in areas of interest [4–6].
AI and machine learning development have improved the processing of large datasets
of different input variables from remote sensors, very quickly and efficiently, in order to
provide output products in areas such as precipitation and evapotranspiration, in spatial
and temporal resolution suitable for applications in hydrology and geosciences [5,7].

The Mediterranean region is the region over the Mediterranean Sea and extends over
three continents, Europe, Asia and Africa. It can be viewed as a transitional zone located
between the moderate climate of European mid latitudes and the semi-arid and arid climate
of northern Africa and the Middle East [8,9]. Many studies have been published about
precipitation in the Mediterranean region, which has been affected by climatic variability.
During the past decades, precipitation spatiotemporal variability has been altered in the
Mediterranean region and has a decreasing tendency. Particularly in the south-eastern
Mediterranean region, where Crete is located, precipitation is an important parameter
for the sustainability of water resources, which has been affected by the variations in
precipitation caused by climatic variability. The precipitation duration has become shorter
and the intensity has increased, causing more frequent flooding events [9–16].

The Mediterranean climate is overall defined as a mid-latitude temperate climate
and is characterized by rainy winters and hot, dry summers. In different regions of the
Mediterranean, the winter and summer temperatures can vary greatly. High rates of
evapotranspiration are observed while the climate varies greatly at multiple timescales,
and significant heterogeneity of strong seasonal variability in precipitation regimes occurs
in many areas [8]. In the eastern Mediterranean zone in particular, rainfall variability is
caused by anomalies associated with North Atlantic climate variability [17].

In Greece, there is also a strong difference between the rainier western Greek region
and the drier eastern part, while the islands, particularly in the southern parts, experience
low precipitation rates. In southern Greece, the contribution of winter precipitation to the
annual totals exceeds 50%, and summer is the dry season [18].

In contrast to a known decreasing trend in the southern parts of Greece, an increasing
trend in precipitation has been observed in the central and northern parts of the coun-
try. [19]. On the other hand, a decreasing tendency in winter rainfall in Greece has been
observed, while the decreasing trend during autumn and spring is considered less signifi-
cant [20]. In addition, in Greece, a significant negative correlation has been found between
the North Atlantic Oscillation Index (NAOI) and precipitation variability [19].

This research work focuses on the Greek island of Crete, which is located in the
southeastern part of the Mediterranean Sea. Crete was selected as a study area due to the
availability of precipitation data and because, according to recent studies, it is a hot spot
for the effects of climate change [21,22]. Rainfall variability in Crete was also found to
be linked to NAOI variability. For the period from 1981 to 2015, there was a statistically
significant negative association between the island’s rainfall variability and the North
Atlantic Oscillation Index [23].

The present work introduces a geostatistical methodology based on the space–time
kriging method that combines satellite and ground precipitation observations exploiting the
spatiotemporal interdependence of space–time data for the enhancement of spatiotemporal
mapping and analysis, both in terms of spatial resolution and accuracy. The extension of the
methodology that incorporates auxiliary information is known as space–time regression or
residual kriging (STRK). In this study, the covariates were the post-processed PERSIANN-
CCS satellite precipitation data and geographical features. Space–time kriging and STRK
have been successfully applied to different datasets and rainfall networks to analyze
precipitation variations in space and time [24–34]. These works endorse the applicability of
the methodology on precipitation data. Space–time geostatistics can be useful in exploiting
the interdependence of the data and in incorporating auxiliary variables in order to provide
reliable estimations in ungauged locations. In addition, it is a useful tool to estimate
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precipitation in higher spatial resolution compared to the available satellite products,
which exploit denser geographical features as auxiliary information.

The fusion of satellite and ground precipitation information has been applied mainly
in spatial or temporal only geostatistical analysis [35,36], and very rarely in spatiotem-
poral geostatistical analysis [13,37,38]. However, in this work, a new extension of the
methodology is applied, which incorporates auxiliary information of satellite precipitation
observations and geographical covariates to improve precipitation mapping. In addition,
another novelty is the successful assessment of the sum-metric space–time variogram
model in such an approach. STRK has been applied previously in Crete [13], but this work
applies a trend model that considers different input information.

This study considers annual precipitation data for the hydrological period from
2009/10 to 2017/18. The hydrological year in the Mediterranean region starts in October
and ends in September of the following year. The prediction performance of the proposed
method is tested by comparing predictions with the available data for the hydrological
year 2016/17, which recorded an average annual precipitation rate close to the historical
average. A recent year was selected because it follows two hydrological years of extreme
high and low precipitation rates, which allows the geostatistical model to be trained with
the extreme behavior of the study variable in the region.

2. Methodology
2.1. Study Area and Data

The island of Crete has a dry sub-humid Mediterranean climate. Precipitation rates
over the island vary according to the distance from the sea and the altitude difference, while
a precipitation gradient exists from the east to the west of the island. The average annual
precipitation in Crete has been reported historically to be around 927 mm [39,40]. However,
according to a new report covering the years from 1981 to 2014, the total annual rainfall on
the island was 798.3 mm [23]. In the island of Crete, a monitoring network of 53 randomly
distributed meteorological stations is operated from the National Observatory of Greece
(Figure 1) to cover the entire island area and its variable topography. For this work,
precipitation measurements were received and processed from these stations. The data
consist of annual precipitation rates during the 2009/10–2017/18 period [41]. Auxiliary
correlated information in terms of geographical covariates is also used to support the space–
time geostatistical analysis of precipitation in the island of Crete. The terrain variability
affects the precipitation patterns [42–44]. However, in this work, any terrain effect is
embedded in the spatiotemporal model through the ground precipitation observations that
are affected from elevation variability, meaning that it is summarized in the spatiotemporal
variogram. Consideration of the complexity of the terrain should be dealt with by non-
stationary methods, which model the local spatial complexity, while our method assumes
stationarity, that is, homogeneous terrain complexity [33,44].

2.2. Satellite Sensors Data

The satellite data covering the period between the hydrological years 2009/10 and
2017/18 are obtained from the PERSIANN Cloud Classification System (PERSIANN-
CCS) developed by the Center for Hydrometeorology and Remote Sensing (CHRS) at the
University of California, Irvine (UCI). The PERSIANN-CCS precipitation estimates are
computed based on the categorization of cloud features, extracted from satellite images.
It uses a variable threshold cloud segmentation algorithm, which provides better cloud
segmentation accuracy in comparison to traditional approaches, by means of constant
threshold segmentation. The separated cloud patches are then classified based on their
features, which helps in assigning a rainfall value to each pixel in each cloud. For cloud
segmentation and classification, long-wave infrared (10.2–11.2 um) measurements from
geostationary satellites are processed. To achieve worldwide coverage, images from GOES,
GMS and METEOSAT satellites are used. The data-processing pipeline is shown in Figure 2.
For assigning rainfall estimation values, the system uses a neural network trained on a vast
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variety of data sources, such as NASA-EOS TRMM and AQUA, NOAA, DSMP and GPM
satellites, but also radar cloud reflectivity and rain gauge measurements. The detailed
description of how clouds are classified and how rainfall values are estimated is presented
in [6]. Precipitation estimates calculated using the PERSIANN-CCS are freely available on
the CHRS Data Portal [5]. The dataset provides global coverage, with some exceptions,
with spatial resolution of 0.04 degrees and time resolution of an hour. The data available
on the CHRS portal spans from January 2003 to the present day. Data from the Data Portal
was processed, converted to pixels and aggregated using Python scripts implemented by
authors to create an entry dataset for further processing (Figure 2). Figure 2 presents the
output average satellite estimates in the area of Crete for the study period, created after
an aggregation of the annual values. Spatial and temporal resolutions of the final dataset
are the same as CHRS data. The assumption that the exported precipitation is evenly
distributed in each grid cell applies.
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2.3. Space–Time Kriging Method

A spatiotemporal geostatistical analysis of precipitation measurements was performed
using space–time regression or residual kriging (STRK). This methodology has been suc-
cessfully applied in similar applications using annual precipitation data [28,31,33]. The
geostatistical analysis using the proposed methods and tools was performed using the
“gstat” package of R software [45]. Space–time observations in N sample points are defined

http://chrs.web.uci.edu/SP_activities01.php
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as Z(s, t), where Z is the observation, s the spatial coordinates and t the time step, whereas
the estimates in space–time depend on Z(si, ti), . . . , Z(sN , tN). The observation values can
be analyzed into two terms following Equation (1):

Z(s, t) = mZ(s, t) + Z′(s, t) (1)

where, mZ(s, t) is the trend term and Z′(s, t) the residual term modeling the space–time
fluctuations. The trend term is usually calculated using correlated auxiliary variables. The
space–time residual model involves: mZ(s, t) = β1X1(s) + β2X2(s) + β0, where β are the
regression coefficients, and X1(s) and X2(s) are covariates related to observed precipitation,
where the former denotes the average satellite estimates for the study period and the latter
the longitude direction of observation locations s. The latter is applied because from the
initial analysis of data correlation between ground observations and satellite data, it was
found that the correlation varies more in the longitude direction (62–81%) than in the
latitude direction (69–76%). The overall correlation was 71%. Thus, the spatiotemporal
random field of annual precipitation fluctuates along a spatiotemporal trend, which was
removed using satellite precipitation data and longitude coordinate direction.

The experimental spatiotemporal variogram model of the residuals is given by:

γ̂Z(rs, rt) =
1

2N(rs, rt)
∑

N(rs ,rt)

[
Z′ (si, ti)− Z′ (sj + rs, tj + rt)

]2 (2)

where rs = ||si− sj||, rt = |ti − tj|, and N(rs, rt) is the number of space–time pairs in the
corresponding lags.

The space–time kriging estimator using residual data notation is given below:

Ẑ′(s 0, t 0) = ∑{i: si ,ti∈S0}
λ i Z′(s i, t i), (3)

where S0 denotes the observation points that belong in the estimation neighborhood of
(s 0, t 0). The term Ẑ′(s 0, t 0) denotes the estimation point in terms of location and time,
Z′(si, t i) are the observed values/residuals of the neighborhood at specific location and
time and λ i express the weights of the space–time kriging process determined as follows:

∑{i: si ,ti∈S0}
λ i γZ′ (si, sj; ti, tj) + µ = γZ′ (sj, s0; tj, t0), j = 1, . . . , N0 (4)

∑{i: si ,ti∈S0}
λ i = 1 (5)

N0 is the number of points within the search neighborhood of (s 0, t 0), γZ′ (si, sj; ti, tj)
is the variogram between two sampled points si and sj at times ti and tj, γZ′ (sj, s0; tj, t0)
the variogram between sj, tj and the estimation point s0, t0 and µ is the Lagrange multiplier
enforcing the zero bias constraint.

The STRK estimate of the precipitation rate is expressed as:

Ẑ(s0, t0) = mZ(s0, t0) + Ẑ′(s0, t0) (6)

where mZ(s0, t0) is the estimated trend function, and Ẑ′(s0, t0) is the interpolated residual
computed by means of space–time ordinary kriging.

The variance of the STRK estimator is given by:

Var
(
Ẑ(s0, t0)− Z(s0, t0)

)
= σ2{mZ(s0, t0)}+ (∑n

i=1 λi · γST(si − s0, ti − t0) + µ)
(7)

where γST is the space–time (ST) variogram function in terms of the estimation point, while
the variance of the estimated trend is given by:

σ2{mZ(s0, t0)} =
(

x0 − XTC−1c0

)T(
XTC−1X

)−1(
x0 − XTC−1c0

)
(8)
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C is the matrix of covariances at the observation coordinates, X is the measured covariates
matrix at the observation coordinates, xo is the covariates vector at the estimation coordi-
nates, and co is the covariances vector between the observation and estimation points. The
calculated kriging-variance corresponds to the associated uncertainty of estimations.

The space–time experimental variogram (2) is modelled using the sum-metric space–
time variogram as well as the product-sum space–time variogram functions. The sum-
metric model is specified by the following function [46,47]:

γST(rs, rt) = γST(rs, 0) + γST(0, rt) + γST(h), h =
√

rs2 + α rt2 (9)

where γST(rs, 0), γST(0, rt) and γST(h) are spatial, temporal and joint spatiotemporal
variograms, while α is an anisotropic ratio parameter that approximates the space–time
scale variance.

The product-sum model is formed by employing a fusion of a separate product and
sum models [48]. Its covariance form is expressed as:

CST(rs, rt) = k1CS(rs)CT(rt) + k2CS(rs) + k3CT(rt) (10)

where CS, CT are space and time-oriented covariance models with k1 > 0, k2 ≥ 0, k3 ≥
0. In terms of the variogram, a non-separable function is formed [49] according to the
following equation:

γST(rs, rt) = (k1CS(0) + k3)γT(rt) + (k1CT(0) + k2)γs(rs)− k1γS(rs)γT(rt) (11)

where γS, γT are purely spatial and temporal variogram models.
In the present work, different variogram model types were assessed for the different

terms of the sum-metric and product-sum space–time variograms through cross validation
to determine the best fitted space–time model. The sum-metric was applied by means of a
spatial Gaussian, a temporal exponential and a joint exponential model and the product
sum by a spatial Gaussian and a temporal exponential model:

γzs(r) = σ 2
zs

[
1− exp

(
−|rs|

ξs

)2
]
+ c (12)

γzt(rt) = σ 2
zt

[
1− exp

(
−|rt|

ξt

)]
(13)

γZ(
√

rs2 + α rt2) = σ 2
Z

[
1− exp

(
−
√

rs2 + α rt2

ξ J

)]
(14)

where σ is the variance, c is the nugget variance term, ξ is the correlation length in space (s)
and time (t), ξ J the joint scale (or range) parameter, and r is the lag vector in space and time.

3. Results and Discussion

The cumulative annual spatial average variation of precipitation in the island of Crete
based on the ground observations is presented in Figure 3. The spatiotemporal trend of the
ground precipitation observations was removed using satellite precipitation data and the
location (easting direction) of the ground measurements. Next, the geostatistical analysis
was carried out, which involved calculating the space–time experimental variogram of
residuals, performing theoretical space–time variogram modelling and leave-one-out
cross-validation, and finally applying the space–time kriging estimation of the residuals,
incorporating the estimated trend surface at the estimation locations. The STRK residuals
form a weakly stationary random field [50], and such an approach is usually applied to
approximate non-stationarity issues that arise in precipitation data [51,52].
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A full error analysis of the method’s capacity to estimate the annual precipitation val-
ues of the hydrological year 2016/17 at the 53 observation locations is presented in Table 1.
As it can be observed by the estimation of metrics, the spatiotemporal residual kriging
model that involves the sum-metric function delivers more accurate results compared to
that which involves the product-sum. The difference might not be significant between
the two variogram functions, but any enhancement is important for the improvement
of the spatiotemporal variability estimation of physical variables. The bias scatterplot
(Figure 4) provides the error distribution among the estimated values using STRK and the
sum-metric function.

Table 1. Estimation error of the different methods applied with the available dataset to estimate
the annual precipitation values for the hydrological year 2016/17. MAE stands for mean absolute
error, MARE for mean absolute relative error, and bias is the difference between observations and
estimations.

Method MAE (mm) MARE % Bias (mm)

Space–time residual
kriging/sum-metric variogram 54.30 0.11 −22.13

Space–time residual
kriging/product-sum variogram 59.65 0.12 −25.14
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The sum-metric variogram parameters are presented in Table 2, while the product-sum
variogram model parameters are as follows: σ2

zs = 42 mm2, ξτ = 3.5 yr, ξr = 0.31 or 81 km,
the nugget variance c = 8.01 mm2 σ2

zt = 43.95 mm2, k1 > 0.95, k2 ≥ 0.64, k3 ≥ 1.12.

Table 2. Sum-metric variogram models and paraments.

Model Sill Range (Correlation Length) Nugget α

Spatial Gaussian 36.31 mm2 0.25 or 70 km 5.25 mm2

Temporal Exponential 38.16 mm2 4 y 0
Joint Exponential 37.24 mm2 1.14 0 0.95

The best performed sum-metric model fit is presented in Figure 5. A small decrease
in the experimental space–time variogram is observed at separation distances around
0.32 units of normalized distance (approximately 76 km). This indicates that locations
separated by 0.32 units are more similar than locations separated by shorter distances.
This is explained by the location of the monitoring gauges in lowland areas of the island.
Although, in the island, an east–west precipitation gradient exists, the lowland areas
around the island receive similar rainfall values. These gauges are almost the half of the
ensemble, and they are located around the entire island extend. In shorter distances, the
geomorphology of the island affects the rainfall values extent and distribution. At short
distances, there is similarity, which is normal variogram behavior, while at medium to
longer distances the dissimilarity exists because of the variable geomorphology and the
sparse dataset. More observations in space and time would provide different semivariance
distribution of these lags.
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The spatial distribution of the estimated precipitation in the entire island of Crete,
associated with the uncertainty of estimations for the hydrological year 2016/17 based on
the spatiotemporal dynamic behavior of the precipitation fluctuations in terms of their
spatiotemporal interdependence, is presented in Figures 6 and 7.

It should be noted that when two different sources and technologies provide similar
data, some mismatch is expected. However, any mismatches involved in the fusion of the
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datasets are approximated. In this case, the two datasets have an important correlation
of 71%. Nevertheless, due to the wider coverage of satellite information and the lower
resolution, it was applied as auxiliary information. Obviously, the fusion of the datasets in
terms of STRK requires a significant correlation between the datasets.

STRK can be also applied with data in shorter time scales (e.g., daily and monthly),
which can be more useful for agricultural and hydrological purposes. This work validates
the applicability of STRK while exploiting the correlated satellite and geographical auxiliary
information so it can be extended in the future in different time scales and applications.
However, the processing of large-size datasets using STRK may be time-consuming during
the data interdependence calculations and in the estimation procedure.
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The generated precipitation map of the island of Crete shows a spatial distribution that
agrees with previous findings of other works in the area, e.g., the precipitation gradient
from east to west and the low precipitation rates at the south parts of the island. In
comparison to other important similar works in the area of Crete [23,40,53–55] using similar
dataset distribution, the spatiotemporal approach provides significantly improved results
and a significantly reduced uncertainty of estimations. Specifically, the proposed model
improves the estimation error on average 40% and reduces the estimation uncertainty by
25%. In addition, the results of the best-performing method competes with those of recent
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similar applications that apply STRK [13,28,31,33]. All of these works provide similar
estimation errors of around 10–15% in terms of the mean absolute relative error metric.
The developed approach compared to similar methodological applications successfully
employs satellite precipitation data as a covariate which has not been widely applied
in the spatiotemporal framework, but mainly in a solely spatial or temporal context.
In addition, the employment of a geographical parameter (e.g., easting direction) as a
covariate that explains the spatial distribution of precipitation in terms of a specific axis
is applied for the first time. Overall, the combination of this information with a trend
model represents a novel approach in STRK method application that improves spatial
resolution and estimation accuracy. Furthermore, this work validates the applicability
of the sum-metric space–time variogram in precipitation data analysis using space–time
geostatistics.

4. Conclusions

The aim of this research was to introduce a space–time approach for predicting
precipitation on the island of Crete based on STRK and auxiliary information from existing
satellite data obtained with machine learning processing and geographical features. This
study of blending satellite and ground precipitation observations using geostatistics and
machine learning output shows the advantages of this approach compared to previous
applications in the area. The major outputs of this work are: (a) the successful involvement
of a trend model that comprises satellite precipitation data and the spatial distribution
of observed precipitation in terms of a specific axis—in this case the easting coordinate
direction—in space–time geostatistical analysis of precipitation variations using STRK;
(b) the successful employment of the joint space–time data interdependence in terms of
the sum-metric function which strengthened the efficiency of the spatiotemporal process;
and (c) the improved results compared to previous works in the study area and to similar
space–time approaches.

The proposed geostatistical model provides accurate and reliable results and can act
as a good, useful and reliable tool for the spatiotemporal analysis of hydrometeorological
variables in other study areas. It could be applied effectively in areas with similar properties
and data availability, exploiting different geographical or geomorphological properties
depending on the case study, such as elevation, distance from the sea, topographical index
etc., and it will be especially valuable in semi-arid areas prone to climate change to assess
effects on hydrometeorological variables variations.

Future research plans consider the involvement of more auxiliary satellite variables to
the space–time model such as temperature, Normalized Difference Water Index (NDWI) or
Normalized Difference Vegetation Index (NDVI) to study different hydrological processes
in the island of Crete. Further validation of our approach by comparing it with other
interpolation techniques with a similar concept will be carried out. Finally, the exploration
of non-stationary modeling tools in order to cope with varying complexity of the terrain
and its influence on precipitations is a promising avenue for research.
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