292 research outputs found

    Dispensable sequence motifs in the RAG-1 and RAG-2 genes for plasmid V(D)J recombination

    Get PDF
    As a probe of whether RAG-1 and RAG-2 gene products activate other genes or form part of the recombinase itself, certain mutants of the RAG genes were assayed for their ability to activate variable-diversity-joining region [V(D)J] recombination in a plasmid substrate in fibroblasts. The results indicate that the N-terminal one-third of RAG-1, including a zinc-finger-like domain, and an acidic domain of RAG-2 are dispensable for activating V(D)J recombination in a fibroblast, although they contribute quantitatively. In contrast, deletion of the C-terminal segment of RAG-1, which has homology to a topoisomerase-like protein from yeast, abolished recombination activation. These results do not support the hypothesis that the RAG gene products are transcription factors and suggest the possibility that they are parts of the recombination machinery

    TBP binding and the rate of transcription initiation from the human ÎČ-globin gene.

    Get PDF
    DNA-protein interaction studies in vitro revealed several factors binding over the TATA box and the region of transcription initiation (cap) site of the human beta-globin promoter; TATA binding protein TBP at -30, Sp1 at -19, GATA-1 at -12 and +5, YY1 at -9 and a novel factor C1 over the site of initiation (-4 to +7). Point mutants which specifically abolish the binding of each of these proteins were tested in a beta-globin locus control region (LCR) construct which allows quantitative comparisons at physiological levels of transcription. Only mutants which drastically affect the binding of TBP resulted in decreased levels of transcription. A threshold value of TBP binding of 15-30% of wild type was sufficient to give normal levels of transcription. This indicates that the association of TF IID with the TATA box is not limiting in the rate of initiation of transcription

    A Novel Adhesion Molecule in the Murine Thymic Microenvironment: Functional and Biochemical Analysis

    Get PDF
    The rat monoclonal antibody (mAb) 4F1, raised against mouse thymic stromal cells, recognizes cortical epithelium in tissue sections of mouse thymus; however, in flow cytometry, activated leucocytes (T cells, B cells, and macrophages) and transformed thymocytes are also positive for the 4F1-antigen (4F1-Ag). Western blotting, under both reducing and nonreducing conditions, demonstrates that the molecule to which 4F1 binds is expressed in four forms, 29, 32, 40, and 43 kD, all of which carry N-linked carbohydrate; and that the structure is identical on epithelium and lymphocytes. The 4F1-Ag on cortical epithelium is partially sensitive to PI-PLC treatment, whereas on transformed epithelial and lymphoid cell lines, it was resistant to this enzyme. The molecule, therefore, may exist in both transmembrane and phosphoinositol-linked forms. In functional blocking experiments, mAb 4F1 gave inhibition of both T-cell proliferation in MLR and of cytotoxic T-cell killing of alloantigenic targets; it also blocked adhesion of transformed thymocytes to thymic epithelial cells in vitro. These molecular and functional characteristics suggest that the 4F1-Ag is a novel adhesion molecule that may be involved both in intrathymic T lymphocyte differentiation and in peripheral T-cell function

    Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice

    Get PDF
    We have examined the regulatory role of the individual components of the immunoglobulin antigen receptor in B-cell development by transgenic complementation of Rag-1 deficient (Rag-1⁻) mice. Complementation with a membrane ” heavy chain (”HC) gene allows progression of developmentally arrested Rag-1⁻ pro-B-cells to the small pre-B cell stage, whereas the introduction of independently integrated ”HC and Îș light chain (ÎșLC) transgenes promotes the appearance of peripheral lymphocytes which, however, remain unresponsive to external stimuli. Complete reconstitution of the B-cell lineage and the emergence of functionally nature Rag-1⁻ peripheral B cells is achieved by the introduction of cointegrated heavy and light chain transgenes encoding an anti-H-2^k antibody. This experimental system demonstrates the competence of the ”HC and ÎșLC to direct and regulate the sequential stages of B-cell differentiation, defines the time at which negative selection of self-reactive B cells occurs, and shows that elimination of these cells occurs equally well in the absence of Rag-1 as in its presence. These data also support the hypothesis that Rag-1 directly participates in the V(D)J recombination process

    How to tie dangerous surgical knots: easily. Can we avoid this?

    Get PDF
    ObjectiveSecure knots are essential in all areas of surgical, medical and veterinary practice. Our hypothesis was that technique of formation of each layer of a surgical knot was important to its security.DesignEqual numbers of knots were tied, by each of three groups, using three techniques, for each of four suture materials; a standard flat reef knot (FRK), knots tied under tension (TK) and knots laid without appropriate hand crossing (NHCK). Each knot technique was performed reproducibly, and tested by distraction with increasing force, till each material broke or the knot separated completely.SettingTemporary knot tying laboratory.MaterialsThe suture materials were, 2/0 polyglactin 910 (Vicryl), 3/0 polydioxanone, 4/0 poliglecaprone 25 (Monocryl) and 1 nylon (Ethilon).ParticipantsThree groups comprised, a senior surgeon, a resident surgeon and three medical students.Outcome measuresProportion of each knot type that slipped, degree of slippage and length of suture held in loop secured by each knot type.Results20% of FRK tied with all suture materials slipped; all knots tied with the other two techniques, with all materials, slipped, TK (100%) and NHCK (100%). The quantitative degree of slip was significantly less for FRK (mean 6.3%–, 95% CI 2.2% to 10.4%) than for TK (mean 312%, 95% CI 280.0% to 344.0%) and NHCK (mean 113.0%, –95% CI 94.3% to 131.0%).The mean length of suture in loops held within (FRK mean 25.1 mm 95% CI 24.2 to 26.0 mm) was significantly greater than mean lengths held by the other techniques (TK mean 17.0 mm, 95% CI 16.3 to 17.7 mm), (NHCK mean 16.3 mm, 95% CI 15.9 to 16.7 mm). The latter two types of knot may have tightened more than anticipated, in comparison to FRK, with potential undue tissue tension.ConclusionMeticulous technique of knot tying is essential for secure knots, appropriate tissue tension and the security of anastomoses and haemostasis effected.</jats:sec

    A Functional Analysis of the Spacer of V(D)J Recombination Signal Sequences

    Get PDF
    During lymphocyte development, V(D)J recombination assembles antigen receptor genes from component V, D, and J gene segments. These gene segments are flanked by a recombination signal sequence (RSS), which serves as the binding site for the recombination machinery. The murine JÎČ2.6 gene segment is a recombinationally inactive pseudogene, but examination of its RSS reveals no obvious reason for its failure to recombine. Mutagenesis of the JÎČ2.6 RSS demonstrates that the sequences of the heptamer, nonamer, and spacer are all important. Strikingly, changes solely in the spacer sequence can result in dramatic differences in the level of recombination. The subsequent analysis of a library of more than 4,000 spacer variants revealed that spacer residues of particular functional importance are correlated with their degree of conservation. Biochemical assays indicate distinct cooperation between the spacer and heptamer/nonamer along each step of the reaction pathway. The results suggest that the spacer serves not only to ensure the appropriate distance between the heptamer and nonamer but also regulates RSS activity by providing additional RAG:RSS interaction surfaces. We conclude that while RSSs are defined by a “digital” requirement for absolutely conserved nucleotides, the quality of RSS function is determined in an “analog” manner by numerous complex interactions between the RAG proteins and the less-well conserved nucleotides in the heptamer, the nonamer, and, importantly, the spacer. Those modulatory effects are accurately predicted by a new computational algorithm for “RSS information content.” The interplay between such binary and multiplicative modes of interactions provides a general model for analyzing protein–DNA interactions in various biological systems

    Diversification of importin-α isoforms in cellular trafficking and disease states.

    Get PDF
    The human genome encodes seven isoforms of importin α which are grouped into three subfamilies known as α1, α2 and α3. All isoforms share a fundamentally conserved architecture that consists of an N-terminal, autoinhibitory, importin-ÎČ-binding (IBB) domain and a C-terminal Arm (Armadillo)-core that associates with nuclear localization signal (NLS) cargoes. Despite striking similarity in amino acid sequence and 3D structure, importin-α isoforms display remarkable substrate specificity in vivo. In the present review, we look at key differences among importin-α isoforms and provide a comprehensive inventory of known viral and cellular cargoes that have been shown to associate preferentially with specific isoforms. We illustrate how the diversification of the adaptor importin α into seven isoforms expands the dynamic range and regulatory control of nucleocytoplasmic transport, offering unexpected opportunities for pharmacological intervention. The emerging view of importin α is that of a key signalling molecule, with isoforms that confer preferential nuclear entry and spatiotemporal specificity on viral and cellular cargoes directly linked to human diseases
    • 

    corecore