8 research outputs found

    Wild boar density data generated by camera trapping in nineteen European areas

    Get PDF
    This report presents the results of field activities in relation to the generation of reliable wild boar density values by camera trapping (CT) in 19 areas in Europe, mainly in East Europe. Random Encounter Model (REM) densities ranged from 0.35±0.24 to 15.25±2.41 (SE) individuals/km2. No statistical differences in density among bioregions were found. The number of contacts was the component of the trapping rate that determined the coefficient of variation (CV) the most. The daily range (DR) significantly varied as a function of management; the higher values were detected in hunting grounds compared to protected areas, indicating that movement parameters are population specific, and confirming the potential role of hunting activities in increasing wild boar movement and contact rates among individual or groups. The results presented in this report illustrate that a harmonized approach to actual wildlife density estimation (namely for terrestrial mammals) is possible at a European scale, sharing the same protocols, collaboratively designing the study, processing, and analysing the data. This report adds reliable wild boar density values that have the potential to be used for wild boar abundance spatial modelling, both directly or to calibrate outputs of model based on abundance (such as hunting bags) or occurrence data. Future REM developments should focus on improving the precision of estimates (probably through increased survey effort). Next steps require an exhaustive and representative design of a monitoring network to estimate reliable trends of wild boar populations as a function of different factors in Europe. In this regard, the newly created European Observatory of Wildlife will be a network of observation points provided by collaborators from all European countries capable to monitor wildlife population at European level.EFSA-Q-2020-00677Peer reviewe

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    Turkey's globally important biodiversity in crisis

    No full text
    Turkey (Turkiye) lies at the nexus of Europe, the Middle East, Central Asia and Africa. Turkey's location, mountains, and its encirclement by three seas have resulted in high terrestrial, fresh water, and marine biodiversity. Most of Turkey's land area is covered by one of three biodiversity hotspots (Caucasus, Irano-Anatolian, and Mediterranean). Of over 9000 known native vascular plant species, one third are endemic. Turkey faces a significant challenge with regard to biodiversity and associated conservation challenges due to limited research and lack of translation into other languages of existing material. Addressing this gap is increasingly relevant as Turkey's biodiversity faces severe and growing threats, especially from government and business interests. Turkey ranks 140th out of 163 countries in biodiversity and habitat conservation. Millennia of human activities have dramatically changed the original land and sea ecosystems of Anatolia, one of the earliest loci of human civilization. Nevertheless, the greatest threats to biodiversity have occurred since 1950, particularly in the past decade. Although Turkey's total forest area increased by 5.9% since 1973, endemic-rich Mediterranean maquis, grasslands, coastal areas, wetlands, and rivers are disappearing, while overgrazing and rampant erosion degrade steppes and rangelands. The current "developmentalist obsession", particularly regarding water use, threatens to eliminate much of what remains, while forcing large-scale migration from rural areas to the cities. According to current plans, Turkey's rivers and streams will be dammed with almost 4000 dams, diversions, and hydroelectric power plants for power, irrigation, and drinking water by 2023. Unchecked urbanization, dam construction, draining of wetlands, poaching, and excessive irrigation are the most widespread threats to biodiversity. This paper aims to survey what is known about Turkey's biodiversity, to identify the areas where research is needed, and to identify and address the conservation challenges that Turkey faces today. Preserving Turkey's remaining biodiversity will necessitate immediate action, international attention, greater support for Turkey's developing conservation capacity, and the expansion of a nascent Turkish conservation ethic. (C) 2011 Published by Elsevier Ltd

    Turkey's globally important biodiversity in crisis

    No full text
    Turkey (Türkiye) lies at the nexus of Europe, the Middle East, Central Asia and Africa. Turkey's location, mountains, and its encirclement by three seas have resulted in high terrestrial, fresh water, and marine biodiversity. Most of Turkey's land area is covered by one of three biodiversity hotspots (Caucasus, Irano-Anatolian, and Mediterranean). Of over 9000 known native vascular plant species, one third are endemic. Turkey faces a significant challenge with regard to biodiversity and associated conservation challenges due to limited research and lack of translation into other languages of existing material. Addressing this gap is increasingly relevant as Turkey's biodiversity faces severe and growing threats, especially from government and business interests. Turkey ranks 140th out of 163 countries in biodiversity and habitat conservation. Millennia of human activities have dramatically changed the original land and sea ecosystems of Anatolia, one of the earliest loci of human civilization. Nevertheless, the greatest threats to biodiversity have occurred since 1950, particularly in the past decade. Although Turkey's total forest area increased by 5.9% since 1973, endemic-rich Mediterranean maquis, grasslands, coastal areas, wetlands, and rivers are disappearing, while overgrazing and rampant erosion degrade steppes and rangelands. The current "developmentalist obsession", particularly regarding water use, threatens to eliminate much of what remains, while forcing large-scale migration from rural areas to the cities. According to current plans, Turkey's rivers and streams will be dammed with almost 4000 dams, diversions, and hydroelectric power plants for power, irrigation, and drinking water by 2023. Unchecked urbanization, dam construction, draining of wetlands, poaching, and excessive irrigation are the most widespread threats to biodiversity. This paper aims to survey what is known about Turkey's biodiversity, to identify the areas where research is needed, and to identify and address the conservation challenges that Turkey faces today. Preserving Turkey's remaining biodiversity will necessitate immediate action, international attention, greater support for Turkey's developing conservation capacity, and the expansion of a nascent Turkish conservation ethic. © 2011

    Predator responses to fire: a global systematic review and meta‐analysis

    Full text link
    Knowledge of how disturbances such as fire shape habitat structure and composition, and affect animal interactions, is fundamental to ecology and ecosystem management. Predators also exert strong effects on ecological communities, through top-down regulation of prey and competitors, which can result in trophic cascades. Despite their ubiquity, ecological importance and potential to interact with fire, our general understanding of how predators respond to fire remains poor, hampering ecosystem management. To address this important knowledge gap, we conducted a systematic review and meta-analysis of the effects of fire on terrestrial, vertebrate predators world-wide. We found 160 studies spanning 1978–2018. There were 36 studies with sufficient information for meta-analysis, from which we extracted 96 effect sizes (Hedges' g) for 67 predator species relating to changes in abundance indices, occupancy or resource selection in burned and unburned areas, or before and after fire. Studies spanned geographic locations, taxonomic families and study designs, but most were located in North America and Oceania (59% and 24%, respectively), and largely focussed on felids (24%) and canids (25%). Half (50%) of the studies reported responses to wildfire, and nearly one third concerned prescribed (management) fires. There were no clear, general responses of predators to fire, nor relationships with geographic area, biome or life-history traits (e.g. body mass, hunting strategy and diet). Responses varied considerably between species. Analysis of species for which at least three effect sizes had been reported in the literature revealed that red foxes Vulpes vulpes mostly responded positively to fire (e.g. higher abundance in burned compared to unburned areas) and eastern racers Coluber constrictor negatively, with variances overlapping zero only slightly for both species. Our systematic review and meta-analysis revealed strong variation in predator responses to fire, and major geographic and taxonomic knowledge gaps. Varied responses of predator species to fire likely depend on ecosystem context. Consistent reporting of ongoing monitoring and management experiments is required to improve understanding of the mechanisms driving predator responses to fire, and any broader effects (e.g. trophic interactions). The divergent responses of species in our study suggest that adaptive, context-specific management of predator–fire relationships is required.</p
    corecore