239 research outputs found

    Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner

    Get PDF
    Salinity stress enhances sugar accumulation in tomato (Solanum lycopersicum) fruits. To elucidate the mechanisms underlying this phenomenon, the transport of carbohydrates into tomato fruits and the regulation of starch synthesis during fruit development in tomato plants cv. ‘Micro-Tom’ exposed to high levels of salinity stress were examined. Growth with 160 mM NaCl doubled starch accumulation in tomato fruits compared to control plants during the early stages of development, and soluble sugars increased as the fruit matured. Tracer analysis with 13C confirmed that elevated carbohydrate accumulation in fruits exposed to salinity stress was confined to the early development stages and did not occur after ripening. Salinity stress also up-regulated sucrose transporter expression in source leaves and increased activity of ADP-glucose pyrophosphorylase (AGPase) in fruits during the early development stages. The results indicate that salinity stress enhanced carbohydrate accumulation as starch during the early development stages and it is responsible for the increase in soluble sugars in ripe fruit. Quantitative RT-PCR analyses of salinity-stressed plants showed that the AGPase-encoding genes, AgpL1 and AgpS1 were up-regulated in developing fruits, and AgpL1 was obviously up-regulated by sugar at the transcriptional level but not by abscisic acid and osmotic stress. These results indicate AgpL1 and AgpS1 are involved in the promotion of starch biosynthesis under the salinity stress in ABA- and osmotic stress-independent manners. These two genes are differentially regulated at the transcriptional level, and AgpL1 is suggested to play a regulatory role in this event

    Investigation of the Interaction between the Large and Small Subunits of Potato ADP-Glucose Pyrophosphorylase

    Get PDF
    ADP-glucose pyrophosphorylase (AGPase), a key allosteric enzyme involved in higher plant starch biosynthesis, is composed of pairs of large (LS) and small subunits (SS). Current evidence indicates that the two subunit types play distinct roles in enzyme function. Recently the heterotetrameric structure of potato AGPase has been modeled. In the current study, we have applied the molecular mechanics generalized born surface area (MM-GBSA) method and identified critical amino acids of the potato AGPase LS and SS subunits that interact with each other during the native heterotetrameric structure formation. We have further shown the role of the LS amino acids in subunit-subunit interaction by yeast two-hybrid, bacterial complementation assay and native gel. Comparison of the computational results with the experiments has indicated that the backbone energy contribution (rather than the side chain energies) of the interface residues is more important in identifying critical residues. We have found that lateral interaction of the LS-SS is much stronger than the longitudinal one, and it is mainly mediated by hydrophobic interactions. This study will not only enhance our understanding of the interaction between the SS and the LS of AGPase, but will also enable us to engineer proteins to obtain better assembled variants of AGPase which can be used for the improvement of plant yield

    Induction of vacuolar invertase inhibitor mRNA in potato tubers contributes to cold-induced sweetening resistance and includes spliced hybrid mRNA variants

    Get PDF
    Cold storage of tubers of potato (Solanum tuberosum L.) compromises tuber quality in many cultivars by the accumulation of hexose sugars in a process called cold-induced sweetening. This is caused by the breakdown of starch to sucrose, which is cleaved to glucose and fructose by vacuolar acid invertase. During processing of affected tubers, the high temperatures involved in baking and frying cause the Maillard reaction between reducing sugars and free amino acids, resulting in the accumulation of acrylamide. cDNA clones with deduced proteins homologous to known invertase inhibitors were isolated and the two most abundant forms, termed INH1 and INH2, were shown to possess apoplastic and vacuolar localization, respectively. The INH2 gene showed developmentally regulated alternative splicing, so, in addition to the INH2α transcript encoding the full-length protein, two hybrid mRNAs (INH2β*A and INH2β*B) that encoded deduced vacuolar invertase inhibitors with divergent C-termini were detected, the result of mRNA splicing of an upstream region of INH2 to a downstream region of INH1. Hybrid RNAs are common in animals, where they may add to the diversity of the proteome, but are rarely described in plants. During cold storage, INH2α and the hybrid INH2β mRNAs accumulated to higher abundance in cultivars resistant to cold-induced sweetening than in susceptible cultivars. Increased amounts of invertase inhibitor may contribute to the suppression of acid invertase activity and prevent cleavage of sucrose. Evidence for increased RNA splicing activity was detected in several resistant lines, a mechanism that in some circumstances may generate a range of proteins with additional functional capacity to aid adaptability
    corecore