402 research outputs found

    A Study of the Populations of X-ray Sources in the Small Magellanic Cloud with ASCA

    Get PDF
    The Advanced Satellite for Cosmology and Astrophysics (ASCA) has made multiple observations of the Small Magellanic Cloud (SMC). X-ray mosaic images in the soft (0.7--2.0 keV) and hard (2.0--7.0 keV) bands are separately constructed, and the latter provides the first hard X-ray view of the SMC. We extract 39 sources from the two-band images with a criterion of S/N>5, and conduct timing and spectral analyses for all of these sources. Coherent pulsations are detected from 12 X-ray sources; five of which are new discoveries. Most of the 12 X-ray pulsars are found to exhibit long-term flux variabilities, hence they are likely to be X-ray binary pulsars (XBPs). On the other hand, we classify four supernova remnants (SNRs) as thermal SNRs, because their spectra exhibit emission lines from highly ionized atoms. We find that XBPs and thermal SNRs in the SMC can be clearly separated by their hardness ratio (the ratio of the count rate between the hard and soft bands). Using this empirical grouping, we find many XBP candidates in the SMC, although no pulsations have yet been detected from these sources. Possible implications on the star-formation history and evolution of the SMC are presented by a comparison of the source populations in the SMC and our Galaxy.Comment: 11 pages, 39 Figures, to be published in ApJ Supplement. Tables (body and figures also) are available at http://www-cr.scphys.kyoto-u.ac.jp/member/jun/job

    Modeling mycorrhizal fungi dispersal by the mycophagous swamp wallaby (Wallabia bicolor)

    Get PDF
    Despite the importance of mammal-fungal interactions, tools to estimate the mammal-assisted dispersal distances of fungi are lacking. Many mammals actively consume fungal fruiting bodies, the spores of which remain viable after passage through their digestive tract. Many of these fungi form symbiotic relationships with trees and provide an array of other key ecosystem functions. We present a flexible, general model to predict the distance a mycophagous mammal would disperse fungal spores. We modelled the probability of spore dispersal by combining animal movement data from GPS-telemetry with data on spore gut-retention time. We test this model using an exemplar generalist mycophagist, the swamp wallaby (Wallabia bicolor). We show that swamp wallabies disperse fungal spores hundreds of metres—and occasionally up to 1265 m—from the point of consumption, distances that are ecologically significant for many mycorrhizal fungi. In addition to highlighting the ecological importance of swamp wallabies as dispersers of mycorrhizal fungi in eastern Australia, our simple modelling approach provides a novel and effective way of empirically describing spore dispersal by a mycophagous animal. This approach is applicable to the study of other animal-fungi interactions in other ecosystems.Funding provided by: Hermon Slade FoundationCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100001109Award Number: HSF08-6Funding provided by: Australian Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000923Award Number: DP0557022Methods are described in the published article

    J-PARC Neutrino Beamline Upgrade Technical Design Report

    Get PDF
    In this document, technical details of the upgrade plan of the J-PARC neutrino beamline for the extension of the T2K experiment are described. T2K has proposed to accumulate data corresponding to 2×10222\times{}10^{22} protons-on-target in the next decade, aiming at an initial observation of CP violation with 3σ3\sigma or higher significance in the case of maximal CP violation. Methods to increase the neutrino beam intensity, which are necessary to achieve the proposed data increase, are described

    Intrinsically determined cell death of developing cortical interneurons

    Get PDF
    Cortical inhibitory circuits are formed by GABAergic interneurons, a cell population that originates far from the cerebral cortex in the embryonic ventral forebrain. Given their distant developmental origins, it is intriguing how the number of cortical interneurons is ultimately determined. One possibility, suggested by the neurotrophic hypothesis1-5, is that cortical interneurons are overproduced, and then following their migration into cortex, excess interneurons are eliminated through a competition for extrinsically derived trophic signals. Here we have characterized the developmental cell death of mouse cortical interneurons in vivo, in vitro, and following transplantation. We found that 40% of developing cortical interneurons were eliminated through Bax- (Bcl-2 associated X-) dependent apoptosis during postnatal life. When cultured in vitro or transplanted into the cortex, interneuron precursors died at a cellular age similar to that at which endogenous interneurons died during normal development. Remarkably, over transplant sizes that varied 200-fold, a constant fraction of the transplanted population underwent cell death. The death of transplanted neurons was not affected by the cell-autonomous disruption of TrkB (tropomyosin kinase receptor B), the main neurotrophin receptor expressed by central nervous system (CNS) neurons6-8. Transplantation expanded the cortical interneuron population by up to 35%, but the frequency of inhibitory synaptic events did not scale with the number of transplanted interneurons. Together, our findings indicate that interneuron cell death is intrinsically determined, either cell-autonomously, or through a population-autonomous competition for survival signals derived from other interneurons

    Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target

    Get PDF
    111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA

    Search for short baseline nu(e) disappearance with the T2K near detector

    Get PDF
    8 pages, 6 figures, submitted to PRD rapid communication8 pages, 6 figures, submitted to PRD rapid communicationWe thank the J-PARC staff for superb accelerator performance and the CERN NA61 collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC and CFI, Canada; Commissariat `a l’Energie Atomique and Centre National de la Recherche Scientifique–Institut National de Physique Nucle´aire et de Physique des Particules, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; Russian Science Foundation, RFBR and Ministry of Education and Science, Russia; MINECO and European Regional Development Fund, Spain; Swiss National Science Foundation and State Secretariat for Education, Research and Innovation, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK. In addition participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; DOE Early Career program, USA

    T2K ND280 Upgrade - Technical Design Report

    Get PDF
    In this document, we present the Technical Design Report of the Upgrade of the T2K Near Detector ND280. The goal of this upgrade is to improve the Near Detector performance to measure the neutrino interaction rate and to constrain the neutrino interaction cross-sections so that the uncertainty in the number of predicted events at Super-Kamiokande is reduced to about 4%. This will allow to improve the physics reach of the T2K-II project. This goal is achieved by modifying the upstream part of the detector, adding a new highly granular scintillator detector (Super-FGD), two new TPCs (High-Angle TPC) and six TOF planes. Details about the detector concepts, design and construction methods are presented, as well as a first look at the test-beam data taken in Summer 2018. An update of the physics studies is also presented

    Measurement of the electron neutrino charged-current interaction rate on water with the T2K ND280 pi(0) detector

    Get PDF
    10 pages, 6 figures, Submitted to PRDhttp://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.112010© 2015 American Physical Society11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PR
    corecore