53 research outputs found

    VaTEST III: Validation of 8 Potential Super-Earths from TESS Data

    Full text link
    NASA's all-sky survey mission, the Transiting Exoplanet Survey Satellite (TESS), is specifically engineered to detect exoplanets that transit bright stars. Thus far, TESS has successfully identified approximately 400 transiting exoplanets, in addition to roughly 6000 candidate exoplanets pending confirmation. In this study, we present the results of our ongoing project, the Validation of Transiting Exoplanets using Statistical Tools (VaTEST). Our dedicated effort is focused on the confirmation and characterization of new exoplanets through the application of statistical validation tools. Through a combination of ground-based telescope data, high-resolution imaging, and the utilization of the statistical validation tool known as \texttt{TRICERATOPS}, we have successfully discovered eight potential super-Earths. These planets bear the designations: TOI-238b (1.610.10+0.09^{+0.09} _{-0.10} R_\oplus), TOI-771b (1.420.09+0.11^{+0.11} _{-0.09} R_\oplus), TOI-871b (1.660.11+0.11^{+0.11} _{-0.11} R_\oplus), TOI-1467b (1.830.15+0.16^{+0.16} _{-0.15} R_\oplus), TOI-1739b (1.690.08+0.10^{+0.10} _{-0.08} R_\oplus), TOI-2068b (1.820.15+0.16^{+0.16} _{-0.15} R_\oplus), TOI-4559b (1.420.11+0.13^{+0.13} _{-0.11} R_\oplus), and TOI-5799b (1.620.13+0.19^{+0.19} _{-0.13} R_\oplus). Among all these planets, six of them fall within the region known as 'keystone planets,' which makes them particularly interesting for study. Based on the location of TOI-771b and TOI-4559b below the radius valley we characterized them as likely super-Earths, though radial velocity mass measurements for these planets will provide more details about their characterization. It is noteworthy that planets within the size range investigated herein are absent from our own solar system, making their study crucial for gaining insights into the evolutionary stages between Earth and Neptune.Comment: Accepted: Publications of the Astronomical Society of Australi

    VaTEST III : validation of 8 potential super-earths from TESS data

    Get PDF
    Funding: The ULiege’s contribution to SPECULOOS has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) (grant Agreement n◦ 336480/SPECULOOS). This research is in part funded by the European Union’s Horizon 2020 research and innovation programme (grants agreements n◦ 803193/BEBOP), and from the Science and Technology Facilities Council (STFC; grant n◦ ST/S00193X/1, and ST/W000385/1).NASA’s all-sky survey mission, the Transiting Exoplanet Survey Satellite (TESS), is specifically engineered to detect exoplanets that transit bright stars. Thus far, TESS has successfully identified approximately 400 transiting exoplanets, in addition to roughly 6 000 candidate exoplanets pending confirmation. In this study, we present the results of our ongoing project, the Validation of Transiting Exoplanets using Statistical Tools (VaTEST). Our dedicated effort is focused on the confirmation and characterisation of new exoplanets through the application of statistical validation tools. Through a combination of ground-based telescope data, high-resolution imaging, and the utilisation of the statistical validation tool known as TRICERATOPS, we have successfully discovered eight potential super-Earths. These planets bear the designations: TOI-238b (1.61 +0.09−0.10 R ⊕ ), TOI-771b (1.42 +0.11−0.09 R ⊕ ), TOI-871b (1.66 +0.11−0.11 R ⊕ ), TOI-1467b (1.83 +0.16−0.15 R ⊕ ), TOI-1739b (1.69 +0.10−0.08 R ⊕ ), TOI-2068b (1.82 +0.16−0.15 R ⊕ ), TOI-4559b (1.42 +0.13−0.11 R ⊕ ), and TOI-5799b (1.62 +0.19−0.13 R ⊕ ). Among all these planets, six of them fall within the region known as ‘keystone planets’, which makes them particularly interesting for study. Based on the location of TOI-771b and TOI-4559b below the radius valley we characterised them as likely super-Earths, though radial velocity mass measurements for these planets will provide more details about their characterisation. It is noteworthy that planets within the size range investigated herein are absent from our own solar system, making their study crucial for gaining insights into the evolutionary stages between Earth and Neptune.Peer reviewe

    \u3cem\u3eTESS\u3c/em\u3e Discovery Of A Sub-Neptune Orbiting A Mid-M Dwarf TOI-2136

    Get PDF
    We present the discovery of TOI-2136 b, a sub-Neptune planet transiting a nearby M4.5V-type star every 7.85 d, identified through photometric measurements from the Transiting Exoplanet Survey Satellite (TESS) mission. The host star is located 33 pc away with a radius of R* = 0.34 ± 0.02 R⊙, a mass of 0.34 ± 0.02 M⊙, and an effective temperature of 3342 ± 100 K. We estimate its stellar rotation period to be 75 ± 5 d based on archival long-term photometry. We confirm and characterize the planet based on a series of ground-based multiwavelength photometry, high-angular-resolution imaging observations, and precise radial velocities from Canada–France–Hawaii Telescope (CFHT)/SpectroPolarimètre InfraROUge (SPIRou). Our joint analysis reveals that the planet has a radius of 2.20 ± 0.17 R⊕ and a mass of 6.4 ± 2.4 M⊕. The mass and radius of TOI-2136 b are consistent with a broad range of compositions, from water-ice to gas-dominated worlds. TOI-2136 b falls close to the radius valley for M dwarfs predicted by thermally driven atmospheric mass-loss models, making it an interesting target for future studies of its interior structure and atmospheric properties

    A super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266

    Get PDF
    We report the discovery and characterisation of a super-Earth and a sub-Neptune transiting the bright (K = 8.8), quiet, and nearby (37 pc) M3V dwarf TOI-1266. We validate the planetary nature of TOI-1266 b and c using four sectors of TESS photometry and data from the newly-commissioned 1-m SAINT-EX telescope located in San Pedro Mártir (México). We also include additional ground-based follow-up photometry as well as high-resolution spectroscopy and high-angular imaging observations. The inner, larger planet has a radius of R = 2.37_(−0.12)^(+0.16) R_⊕ and an orbital period of 10.9 days. The outer, smaller planet has a radius of R = 1.56_(−0.13)^(+0.15) R_⊕ on an 18.8-day orbit. The data are found to be consistent with circular, co-planar and stable orbits that are weakly influenced by the 2:1 mean motion resonance. Our TTV analysis of the combined dataset enables model-independent constraints on the masses and eccentricities of the planets. We find planetary masses of M_p = 13.5_(−9.0)^(+11.0) M_⊕ (<36.8 M_⊕ at 2-σ) for TOI-1266 b and 2.2_(−1.5)^(+2.0) M_⊕ (<5.7 M_⊕ at 2-σ) for TOI-1266 c. We find small but non-zero orbital eccentricities of 0.09_(−0.05)^(+0.06) (<0.21 at 2-σ) for TOI-1266 b and 0.04 ± 0.03 (< 0.10 at 2-σ) for TOI-1266 c. The equilibrium temperatures of both planets are of 413 ± 20 and 344 ± 16 K, respectively, assuming a null Bond albedo and uniform heat redistribution from the day-side to the night-side hemisphere. The host brightness and negligible activity combined with the planetary system architecture and favourable planet-to-star radii ratios makes TOI-1266 an exquisite system for a detailed characterisation

    TOI-2266 b : a keystone super-Earth at the edge of the M dwarf radius valley

    Get PDF
    We validate the Transiting Exoplanet Survey Satellite (TESS) object of interest TOI-2266.01 (TIC 348911) as a small transiting planet (most likely a super-Earth) orbiting a faint M5 dwarf (V=16.54) on a 2.33~d orbit. The validation is based on an approach where multicolour transit light curves are used to robustly estimate the upper limit of the transiting object's radius. Our analysis uses SPOC-pipeline TESS light curves from Sectors 24, 25, 51, and 52, simultaneous multicolour transit photometry observed with MuSCAT2, MuSCAT3, and HiPERCAM, and additional transit photometry observed with the LCOGT telescopes. TOI-2266 b is found to be a planet with a radius of 1.54 ± 0.09,R⊕, which locates it at the edge of the transition zone between rocky planets, water-rich planets, and sub-Neptunes (the so-called M~dwarf radius valley). The planet is amenable to ground-based radial velocity mass measurement with red-sensitive spectrographs installed in large telescopes, such as MAROON-X and Keck Planet Finder (KPF), which makes it a valuable addition to a relatively small population of planets that can be used to probe the physics of the transition zone. Further, the planet's orbital period of 2.33 days places it inside a 'keystone planet' wedge in the period-radius plane where competing planet formation scenarios make conflicting predictions on how the radius valley depends on the orbital period. This makes the planet also a welcome addition to the small population of planets that can be used to test small-planet formation scenarios around M~dwarfs.Peer reviewe

    A super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266

    Get PDF
    We report the discovery and characterisation of a super-Earth and a sub-Neptune transiting the bright (K=8.8K=8.8), quiet, and nearby (37 pc) M3V dwarf TOI-1266. We validate the planetary nature of TOI-1266 b and c using four sectors of TESS photometry and data from the newly-commissioned 1-m SAINT-EX telescope located in San Pedro M\'artir (Mexico). We also include additional ground-based follow-up photometry as well as high-resolution spectroscopy and high-angular imaging observations. The inner, larger planet has a radius of R=2.370.12+0.16R=2.37_{-0.12}^{+0.16} R_{\oplus} and an orbital period of 10.9 days. The outer, smaller planet has a radius of R=1.560.13+0.15R=1.56_{-0.13}^{+0.15} R_{\oplus} on an 18.8-day orbit. The data are found to be consistent with circular, co-planar and stable orbits that are weakly influenced by the 2:1 mean motion resonance. Our TTV analysis of the combined dataset enables model-independent constraints on the masses and eccentricities of the planets. We find planetary masses of MpM_\mathrm{p} = 13.59.0+11.013.5_{-9.0}^{+11.0} M\mathrm{M_{\oplus}} (<36.8<36.8 M\mathrm{M_{\oplus}} at 2-σ\sigma) for TOI-1266 b and 2.21.5+2.02.2_{-1.5}^{+2.0} M\mathrm{M_{\oplus}} (<5.7<5.7 M\mathrm{M_{\oplus}} at 2-σ\sigma) for TOI-1266 c. We find small but non-zero orbital eccentricities of 0.090.05+0.060.09_{-0.05}^{+0.06} (<0.21<0.21 at 2-σ\sigma) for TOI-1266 b and 0.04±0.030.04\pm0.03 (<0.10<0.10 at 2-σ\sigma) for TOI-1266 c. The equilibrium temperatures of both planets are of 413±20413\pm20 K and 344±16344\pm16 K, respectively, assuming a null Bond albedo and uniform heat redistribution from the day-side to the night-side hemisphere. The host brightness and negligible activity combined with the planetary system architecture and favourable planet-to-star radii ratios makes TOI-1266 an exquisite system for a detailed characterisation

    TOI-2084 b and TOI-4184 b: two new sub-Neptunes around M dwarf stars

    Full text link
    We present the discovery and validation of two TESS exoplanets orbiting nearby M dwarfs: TOI-2084b, and TOI-4184b. We characterized the host stars by combining spectra from Shane/Kast and Magellan/FIRE, SED (Spectral Energy Distribution) analysis, and stellar evolutionary models. In addition, we used Gemini-South/Zorro & -North/Alopeke high-resolution imaging, archival science images, and statistical validation packages to support the planetary interpretation. We performed a global analysis of multi-colour photometric data from TESS and ground-based facilities in order to derive the stellar and planetary physical parameters for each system. We find that TOI-2084b and TOI-4184b are sub-Neptune-sized planets with radii of Rp = 2.47 +/- 0.13R_Earth and Rp = 2.43 +/- 0.21R_Earth, respectively. TOI-2084b completes an orbit around its host star every 6.08 days, has an equilibrium temperature of T_eq = 527 +/- 8K and an irradiation of S_p = 12.8 +/- 0.8 S_Earth. Its host star is a dwarf of spectral M2.0 +/- 0.5 at a distance of 114pc with an effective temperature of T_eff = 3550 +/- 50 K, and has a wide, co-moving M8 companion at a projected separation of 1400 au. TOI-4184b orbits around an M5.0 +/- 0.5 type dwarf star (Kmag = 11.87) each 4.9 days, and has an equilibrium temperature of T_eq = 412 +/- 8 K and an irradiation of S_p = 4.8 +/- 0.4 S_Earth. TOI-4184 is a metal poor star ([Fe/H] = -0.27 +/- 0.09 dex) at a distance of 69 pc with an effective temperature of T_eff = 3225 +/- 75 K. Both planets are located at the edge of the sub-Jovian desert in the radius-period plane. The combination of the small size and the large infrared brightness of their host stars make these new planets promising targets for future atmospheric exploration with JWST.Comment: Accepted for publication in A&

    TOI-2084 b and TOI-4184 b:two new sub-Neptunes around M dwarf stars

    Get PDF
    Funding: The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. This research is in part funded by the European Union’s Horizon 2020 research and innovation program (grants agreements n◦ 803193/BEBOP), and from the Science and Technology Facilities Council (STFC; grant n◦ ST/S00193X/1). U.G.J. gratefully acknowledges support from tthe European Union H2020-MSCA-ITN-2019 under grant No. 860470 (CHAMELEON). We acknowledge funding from the European Research Council under the ERC Grant Agreement n. 337591-ExTrA.We present the discovery and validation of two TESS exoplanets orbiting nearby M dwarfs: TOI-2084 b, and TOI-4184b. We characterized the host stars by combining spectra from Shane/Kast and Magellan/FIRE, spectral energy distribution analysis, and stellar evolutionary models. In addition, we used Gemini-South/Zorro & -North/Alopeke high-resolution imaging, archival science images, and statistical validation packages to support the planetary interpretation. We performed a global analysis of multi-colour photometric data from TESS and ground-based facilities in order to derive the stellar and planetary physical parameters for each system. We find that TOI-2084 band TOI-4184 bare sub-Neptune-sized planets with radii of Rp = 2.47 ± 0.13R⊕ and Rp = 2.43 ± 0.21 R⊕, respectively. TOI-2084 b completes an orbit around its host star every 6.08 days, has an equilibrium temperature of Teq = 527 ± 8 K and an irradiation of Sp = 12.8 ± 0.8 S⊕. Its host star is a dwarf of spectral M2.0 ± 0.5 at a distance of 114 pc with an effective temperature of Teff = 3550 ± 50 K, and has a wide, co-moving M8 companion at a projected separation of 1400 au. TOI-4184 b orbits around an M5.0 ± 0.5 type dwarf star (Kmag = 11.87) each 4.9 days, and has an equilibrium temperature of Teq = 412 ± 8 K and an irradiation of Sp = 4.8 ± 0.4 S⊕. TOI-4184 is a metal poor star ([Fe/H] = −0.27 ± 0.09 dex) at a distance of 69 pc with an effective temperature of Teff = 3225 ± 75 K. Both planets are located at the edge of the sub-Jovian desert in the radius-period plane. The combination of the small size and the large infrared brightness of their host stars make these new planets promising targets for future atmospheric exploration with JWST.Publisher PDFPeer reviewe
    corecore