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ABSTRACT

We present the discovery and validation of two TESS exoplanets orbiting nearby M dwarfs: TOI-2084 b, and TOI-4184 b. We characterized the host
stars by combining spectra from Shane/Kast and Magellan/FIRE, SED (Spectral Energy Distribution) analysis, and stellar evolutionary models.
In addition, we used Gemini-South/Zorro & -North/Alopeke high-resolution imaging, archival science images, and statistical validation packages
to support the planetary interpretation. We performed a global analysis of multi-colour photometric data from TESS and ground-based facilities
in order to derive the stellar and planetary physical parameters for each system. We find that TOI-2084 b and TOI-4184 b are sub-Neptune-sized
planets with radii of Rp = 2.47± 0.13R⊕ and Rp = 2.43± 0.21R⊕, respectively. TOI-2084 b completes an orbit around its host star every 6.08 days,
has an equilibrium temperature of Teq = 527 ± 8 K and an irradiation of S p = 12.8 ± 0.8 S ⊕. Its host star is a dwarf of spectral M2.0 ± 0.5 at a
distance of 114 pc with an effective temperature of Teff = 3550 ± 50 K, and has a wide, co-moving M8 companion at a projected separation of
1400 au.
TOI-4184 b orbits around an M5.0 ± 0.5 type dwarf star (Kmag = 11.87) each 4.9 days, and has an equilibrium temperature of Teq = 412 ± 8 K and
an irradiation of S p = 4.8± 0.4 S ⊕. TOI-4184 is a metal poor star ([Fe/H] = −0.27± 0.09 dex) at a distance of 69 pc with an effective temperature
of Teff = 3225 ± 75 K. Both planets are located at the edge of the sub-Jovian desert in the radius-period plane. The combination of the small size
and the large infrared brightness of their host stars make these new planets promising targets for future atmospheric exploration with JWST.

Key words. Exoplanetary systems; stars: TOI-2084 and TOI-4184; techniques: photometric

1. Introduction

M dwarfs are the most common stars in our galaxy (Henry
et al. 1994; Kirkpatrick et al. 1999), and small planets occur
around M dwarfs more frequently than Sun-like stars (Nutz-
man & Charbonneau 2008; Kaltenegger & Traub 2009; Win-
ters et al. 2014). M dwarfs are, therefore, attractive and exciting
targets for searching for small and temperate exoplanets using
the transit technique, thanks to their small sizes, low masses,
and luminosities. The transit signal is much deeper than that
caused by similar planets orbiting Sun-like stars, which makes
such planets easier to detect and characterize. Moreover, such
planetary systems are suitable targets for atmospheric character-
ization through transmission spectroscopy, including with JWST
(Kempton et al. 2018). In addition, the radial-velocity semi-

⋆ E-mail: khalid.barkaoui@uliege.be

amplitudes of the stellar hosts are higher, thanks to the low stel-
lar masses, which makes them suitable targets for planetary mass
measurements. M dwarf systems will allow a better understand-
ing of the so-called radius valley between the super-Earth- and
sub-Neptune-sized planets (see, e.g., Owen & Wu (2013); Ful-
ton & Petigura (2018); Van Eylen et al. (2018). Moreover, the
discovery of additional sub-Neptune desert planets (Mazeh et al.
2016) allows us to further explore and understand the physical
properties of such exoplanetary systems.

The Transiting Exoplanet Survey Satellite (TESS) mission
(Ricker et al. 2015) was launched by NASA in 2018 to search
for planets around bright nearby dwarfs, including M-type stars.
To date, TESS has discovered more than 330 exoplanets or-
biting FGKM stars, including 66 planets orbiting around M
dwarfs (NASA Archive of Exoplanets). Since 2018 NASA’s TESS
mission has discovered several sub-Neptune-sized exoplanets
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around M dwarfs (e.g., TOI-1696 b & TOI-2136 b: Beard et al.
(2022) TOI-1201 b: Kossakowski et al. (2021), TOI-2081 b &
TOI-4479 b: Esparza-Borges et al. (2022), TOI-122 b & TOI-
237 b: Waalkes et al. (2021), TOI-269 b: Cointepas et al. (2021),
TOI-2406 b: Wells et al. (2021), TOI-620 b: Reefe et al. (2022),
TOI-2136 b: Gan et al. (2022), TOI-2257 b: Schanche et al.
(2022) and TOI-2096 c: Pozuelos et al. (2023) ). In this paper
we present the discovery and validation of two new TESS exo-
planets orbiting nearby M dwarfs, TOI-2084 b and TOI-4184 b.
In Section 2, we present the TESS photometry, high-precision
photometric follow-up observations using ground-based facili-
ties, and high-resolution imaging from Gemini. In Section 3, we
present an analysis of the host star properties derived from their
Spectral Energy Distributions (SEDs) and spectra. In Section 4,
we validate the planetary nature of the transit signals. In Sec-
tion 5, we present our global analysis of the photometric data sets
of the planetary systems, which allow us to determine the phys-
ical parameters of the star and planet. In Section 6, we present
planet searches and detection limits from the TESS photometry.
Finally, we discuss our results and present our conclusions in
Section 7.

2. Observation and data reduction

2.1. TESS photometry

The host star TIC 394357918 (TOI-4184) was observed by
TESS, (Ricker et al. 2015) mission in Sectors 1, 28 and 39 for
27 days each on TESS CCD 3 Camera 3. The Sector 1 cam-
paign started on UTC July 25 2018 and ended on UTC August
22 2018. The Sector 28 campaign started on UTC July 30 2020
and ended on UTC August 26 2020. The Sector 39 campaign
started on UTC 2021 May 26 and ended on UTC 2021 June 26.

The star TIC 441738827 (TOI-2084) was observed by TESS
in 2-minutes cadence during Sectors 16 (UTC September 11 to
October 07 2019), 19–23 (UTC November 27 2019 to April 16
2020), 25–26 (UTC May 13 to July 04 2020), 48–60 (UTC Jan-
uary 31 2021 to January 18 2023). TOI-4184 and TOI-2084 were
selected by Stassun et al. (2018) to be observed using the 2-
minute short-cadence mode. To perform TESS data modeling,
we retrieved the Presearch Data Conditioning light curves (PDC-
SAP, Stumpe et al. (2012); Smith et al. (2012); Stumpe et al.
(2014) constructed by the TESS Science Processing Operations
Center (SPOC; Jenkins et al. (2016)) at Ames Research Cen-
ter from the Mikulski Archive for Space Telescopes. PDC-SAP
light curves have been corrected for instrument systematics and
crowding effects. Figure 1 shows the TESS field-of-view for each
target and photometric apertures used with the location of nearby
Gaia DR3 sources around each target (Gaia Collaboration et al.
2021). TESS light curves for TOI-2084 and TOI-4184 are pre-
sented in Figure 2 and Figure 3.

2.2. Ground-based photometry

We used the TESS Transit Finder tool, which is a cus-
tomized version of the Tapir software package (Jensen 2013),
to schedule the photometric time-series follow-up observations.
These are summarized in the following, and the resulting light
curves are presented in Figure 4.

2.2.1. SPECULOOS-South

We used one of the SPECULOOS-South (Search for habitable
Planets EClipsing ULtra-cOOl Stars, Jehin et al. (2018); Delrez

et al. (2018); Sebastian et al. (2021) facilities to observe one full
transit of TOI-4184.01 on UTC September 25 2021 in the Sloan-
z′ filter with an exposure time of 42s. Each 1.0-m robotic tele-
scope is equipped with a 2K×2K CCD camera with a pixel scale
of 0.35′′ and a field of view of 12′×12′. We performed aper-
ture photometry in an uncontaminated target aperture of 3.9′′and
a PSF full-width half-maximum (FWHM) of 1.7′′. Data reduc-
tion and photometric measurements were performed using the
PROSE1 pipeline (Garcia et al. 2021).

2.2.2. SPECULOOS-North

We used SPECULOOS-North/Artemis to observe two transits
of TOI-2084.01. Artemis is a 1.0-m Ritchey-Chretien telescope
equipped with a thermoelectrically cooled 2K×2K Andor iKon-
L BEX2-DD CCD camera with a pixel scale of 0.35′′, result-
ing in a field-of-view of 12′ × 12′ (Burdanov et al. 2022). It is
a twin of the SPECULOOS-South (Section 2.2.1) and SAINT-
EX (Section 2.2.3) telescopes. The first transit was observed on
UTC 2020 August 13, and the second was observed on UTC
June 25 2021. Both transits were observed in the I + z filter with
an exposure time of 33 s, and we performed aperture photome-
try in an uncontaminated target apertures of 2.8–3.2′′and a PSF
FWHM of 1.4–1.6′′. Data reduction (bias, dark and flat correc-
tion) and photometric measurements were performed using the
PROSE pipeline (Garcia et al. 2021).

2.2.3. SAINT-EX

We used the SAINT-EX telescope to observe one full transit
of TOI-2084.01 on UTC July 13 2021 in the r′ filter with an
exposure time of 141 seconds. SAINT-EX (Search And char-
acterIsatioN of Transiting EXoplanets, Demory et al. (2020))
is a 1-m F/8 Ritchey-Chretien telescope located at the Sierra
de San Pedro Mártir in Baja California, México. SAINT-EX is
equipped with a thermoelectrically cooled 2K × 2K Andor iKon-
L CCD camera. The detector gives a field-of-view of 12′×12′
with a pixel scale of 0.35′′ per pixel. We performed aperture pho-
tometry in an uncontaminated target aperture of 3.2′′and a PSF
FWHM of 1.4′′. Data reduction and photometric measurements
were performed using the PROSE pipeline (Garcia et al. 2021).

2.2.4. TRAPPIST-North

We used the 60-cm TRAPPIST-North telescope to observe one
partial transit and one full transit of TOI-2084.01. TRAPPIST-
North (TRAnsiting Planets and PlanetesImals Small Telescope)
is a 60-cm robotic telescope installed at Oukaimeden Observa-
tory in Morocco since 2016 (Barkaoui et al. (2019), and refer-
ences therein). It is equipped with a thermoelectrically cooled
2K×2K Andor iKon-L BEX2-DD CCD camera with a pixel
scale of 0.6′′ and a field-of-view of 20′ × 20′. The first transit
was observed on UTC January 30 2021 in the I + z filter with an
exposure time of 60 seconds. We took 154 science images and
performed aperture photometry in an uncontaminated aperture of
7.6′′and a PSF FWHM of 3.1′′. The second transit was observed
on UTC June 25 2021 in the I + z filter with an exposure time
of 65 seconds. We took 216 science images and performed aper-
ture photometry in an uncontaminated aperture of 5.6′′and a PSF
FWHM of 3.7′′. During that second observation of TOI-2084,
the telescope underwent a meridian flip at BJD 2459391.4829.

1 Prose: https://github.com/lgrcia/prose
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Data reduction and photometric measurements were performed
using the PROSE pipeline (Garcia et al. 2021).

2.2.5. TRAPPIST-South

Two full transits of TOI-4184.01 were observed with the
TRAPPIST-South telescope. TRAPPIST-South is a 60-cm
Ritchey-Chretien telescope located at ESO-La Silla Observatory
in Chile, which is the twin of TRAPPIST-North (Section 2.2.4).
It is equipped with a thermoelectrically cooled 2K×2K FLI Pro-
line CCD camera with a field of view of 22′ × 22′ and pixel-
scale of 0.65′′/pixel (Jehin et al. 2011; Gillon et al. 2011). The
first transit was observed on UTC August 2 2021, and the second
transit was observed on UTC September 25 2021. Both transits
were observed in the I + z filter with an exposure time of 150 s,
and we performed aperture photometry in an uncontaminated
target apertures of 3.5–6.2′′and a PSF FWHM of 2.4–2.7′′. Dur-
ing the second transit of TOI-4184.01, the telescope underwent a
meridian flip at BJD = 2459478.8226. Data reduction and photo-
metric measurements were performed using the PROSE pipeline
(Garcia et al. 2021).

2.2.6. LCOGT-2.0m MuSCAT3

We used the Las Cumbres Observatory Global Telescope
(LCOGT; Brown et al. (2013)) 2.0-m Faulkes Telescope North
at Haleakala Observatory in Hawaii to observe two transits of
TOI-2084.01 simultaneously in Sloan-g′, r′, i′ and Pan-STARRS
z-short filters. The first (full) transit was observed on UTC May
19 2021, and the second (partial) transit was observed on UTC
May 26 2021. We used uncontaminated 4′′ target apertures to ex-
tract the stellar fluxes. The telescope is equipped with the MuS-
CAT3 multi-band imager (Narita et al. 2020). The raw data were
calibrated by the standard LCOGT BANZAI pipeline (McCully
et al. 2018), and photometric measurements were extracted us-
ing AstroImageJ2 (Collins et al. 2017).

2.2.7. Las Cumbres Observatory CTIO-1.0m and
SAAO-1.0m

We used the Las Cumbres Observatory Global Telescope
(LCOGT; Brown et al. (2013)) 1.0-m network to observe four
full transits of TOI-4184.01 in the Sloan-i′ and g′ filters. The
telescopes are equipped with 4096x4096 SINISTRO Cameras,
having an image scale of 0.389′′ per pixel and a Field-Of-
View of 26’x26’. The raw data were calibrated by the standard
LCOGT BANZAI pipeline (McCully et al. 2018), and photomet-
ric measurements were extracted using AstroImageJ (Collins
et al. 2017). Two transits were observed at Cerro Tololo Inter-
american Observatory (CTIO) in Sloan-i′ on UTC July 28 2021
and September 20 2021, using uncontaminated 3.1′′ and 4.3′′
target apertures. Two others were observed simultaneously in
the Sloan-g′ and i′ at South Africa Astronomical Observatory
(SAAO) on UTC October 10 2021, using uncontaminated 3.9′′
target apertures.

2.2.8. Danish-1.54m

Three transits of TOI-4148.01 were observed on UTC Septem-
ber 15, 20 and 25 2021 by the MiNDSTEp consortium (Do-
minik et al. 2010) using the Danish 1.54 m telescope at ESO’s La

2 AstroImageJ: https://www.astro.louisville.edu/
software/astroimagej/

Silla observatory in Chile. The instrument used was the DFOSC
imager, operated with a Bessell I filter for two transits and a
Bessell R filter for the third. In this setup, the CCD covers a field
of view of 13.7′×13.7′ with a pixel scale of 0.39′′ pixel−1. The
images were unbinned and windowed for the first transit, result-
ing in a dead time between consecutive images of 10 s; however,
in an effort to improve the SNR of the target PSF, the remain-
ing transits used 2 × 2 binning and no windowing (to obtain a
greater selection of comparison stars), resulting in a dead time
between consecutive images of 13 s. The exposure times were
60 s for all images and transits. Due to the target being quite
faint (V = 17thmag, I = 14thmag) and with the presence of
close nearby sources (both point and extended) the telescope was
marginally defocused and autoguiding was maintained through
all observations. The amount of defocus applied caused the re-
sulting PSFs to have a diameter of ≈ 10 pixels for all nights.

We reduced the Danish 1.54-m telescope data using the DE-
FOT pipeline (Southworth et al. 2009, 2014). Aperture photom-
etry was performed with an IDL implementation of DAOPHOT
(Stetson 1987), with the addition of image motion tracking by
cross-correlation with a reference image to produce a differen-
tial magnitude light curve. The light curve was produced after si-
multaneously fitting a first-order polynomial to the out of transit
data. The aperture sizes and number of suitable comparison stars
were adjusted to obtain the lowest baseline scatter; this method
affects the scatter in the transit data but does not significantly
impact the light curve shape. The timestamps from the fits files
were converted to the BJDTDB time-scale using routines from
Eastman et al. (2010).

2.2.9. ExTrA

The ExTrA facility (Bonfils et al. 2015), located at La Silla
observatory, consists of a near-infrared (0.85–1.55 µm; NIR)
multi-object spectrograph fed by three 60-cm telescopes. Five
fiber positioners at the focal plane of each telescope pick up
light from the target and four comparison stars. We observed
one full transit of TOI-4184 b on UTC September 15 2021 with
two telescopes using the 8′′ aperture fibers. We used the spec-
trograph’s low resolution mode (R ∼20) and 60-second expo-
sures. We also observed 2MASS J02542961-7941578, 2MASS
J03025970-7941390, 2MASS J03025068-7918174, and 2MASS
J02581731-7913567, with J-magnitudes (Skrutskie et al. 2006)
and effective temperatures (Gaia Collaboration et al. 2018) sim-
ilar to TOI-4184, for use as comparison stars. The resulting Ex-
TrA data were analyzed using custom data reduction software.

2.3. Spectroscopy

2.3.1. Shane/Kast Optical Spectroscopy

We obtained an optical spectrum of TOI-2084 and its co-moving
companion (see below) on UTC November 13 2021 using the
Kast double spectrograph (Miller & Stone 1994) mounted on the
3-m Shane Telescope at Lick Observatory in clear conditions.
Six exposures of 600 s each was obtained of both sources TOI-
2084 simultaneously using the 600/7500 grism and 1′′.5-wide
slit, providing 6000–9000 Å wavelength coverage at an average
resolution of λ/∆λ = 1900. We also observed the flux calibra-
tor Feige 110 later that night (Hamuy et al. 1992, 1994). Data
were reduced using the kastredux package3, which included im-
age reduction, boxcar extraction of the one-dimensional spectra,

3 kastredux: https://github.com/aburgasser/kastredux.
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Planet Date (UT) Filter Telescope Exptime Aperture size FWHM Coverage

[second] [arcsec] [arcsec]

TOI-2084.01 Aug 13 2020 I + z Artemis-1.0m 33 2.8 1.4 Egress

TOI-2084.01 Jan 30 2021 I + z TRAPPIST-N-0.6m 65 7.6 3.1 Egress

TOI-2084.01 May 20 2021 Sloan-g′, r′, i′, zs MuSCAT3-2.0m - 4.0 2.0 Full

TOI-2084.01 May 26 2021 Sloan-g′, r′, i′, zs MuSCAT3-2.0m - 4.0 2.0 Egress

TOI-2084.01 Jun 25 2021 I + z Artemis-1.0m 33 3.2 1.6 Full

TOI-2084.01 Jun 25 2021 I + z TRAPPIST-N-0.6m 65 5.6 3.7 Full

TOI-2084.01 Jul 13 2021 Sloan-r′ SAINT-EX-1.0m 141 3.2 1.4 Egress

TOI-4184.01 Jul 28 2021 ip LCO-CTIO-1.0m 240 3.1 1.3 Full

TOI-4184.01 Aug 02 2021 I + z TRAPPIST-S-0.6m 150 3.5 2.4 Full

TOI-4184.01 Sep 15 2021 IC Danish-1.54m 60 2.8 1.3 Full

TOI-4184.01 Sep 15 2021 1.21µm ExTrA-0.6m 60 4.0 1.5 Full

TOI-4184.01 Sep 20 2021 IC Danish-1.54m 60 5.5 4.5 Full

TOI-4184.01 Sep 20 2021 I + z TRAPPIST-S-0.6m 150 6.2 2.7 Full + Flip

TOI-4184.01 Sep 20 2021 Sloan-i′ LCO-CTIO-1.0m 240 4.3 2.2 Full

TOI-4184.01 Sep 25 2021 Sloan-z′ SPECULOOS-S-1.0m 42 3.9 1.7 Full

TOI-4184.01 Sep 25 2021 Rc Danish-1.54m 100 4.0 2.8 Full

TOI-4184.01 Oct 10 2021 Sloan-g′, i′ LCO-SAAO-1.0m 400,240 3.9 2.3 Full

Table 1: Table shows the observational parameters: date of observation, filter used, telescope, exposure time(s), photometric aperture
size, and FWHM of the point-spread function.
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Fig. 1: TESS target pixel file images of TOI-2084 observed in Sector 16 (left panel) and TOI-4184 observed in Sector 1 (right panel),
made by tpfplotter (Aller et al. 2020). Red dots show the location of Gaia DR3 sources, and the red shaded region shows the
photometric apertures used to extract the photometric measurements.

wavelength calibration, and flux calibration. No correction for
telluric absorption was applied. The final spectra have median
signals-to-noise of 125 (TOI-2084) and 12 (TOI-2084B) around
8400 Å, with a wavelength accuracy of 0.26 Å (12 km/s).

2.3.2. Magellan/FIRE Spectroscopy

We obtained a spectrum of TOI-4184 with the FIRE spectro-
graph (Simcoe et al. 2008) on the 6.5-m Magellan Baade Tele-
scope on UTC September 23, 2021. We used the high-resolution
echellette mode with the 0′′.60 slit, providing a 0.82–2.51 µm
spectrum with a resolving power of R∼6000. We collected a sin-
gle ABBA nod sequence (4 exposures) with integration times of
95.1 s per exposure, giving a total exposure time of 380.4 s. Af-
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Fig. 2: Phase-folded TESS transit light curves of TOI-2081.01 (left) and TOI-4184.01 (right). The points with the error bar are data
binned to 15 minutes.

ter the science exposures, we collected a pair of 15-s exposures
of the A0 V star HD 45039 for flux and telluric calibrations fol-
lowed by a pair of 10-s arc lamp exposures and a set of 10 1-s
flat-field exposures. We reduced the data using the FIREHOSE
pipeline4. The final spectrum (Figure 8) has a median SNR of
77, with peaks in the J, H, and K bands of 120–140.

2.4. High-Resolution Imaging from Gemini-8m0

TOI-2084 was observed on UTC June 24 2021 using the
’Alopeke speckle instrument on the Gemini North 8-m telescope
and TOI-4184 was observed on UTC December 23 2021 using
the Zorro speckle instrument on the Gemini South 8-m telescope
(see Scott et al. (2021)). ’Alopeke and Zorro provide simultane-
ous speckle imaging in two bands (562 nm and 832 nm) with
output data products including a reconstructed image with ro-
bust contrast limits on companion detections (e.g., Howell et al.
2016). A total of 13/11 sets of 1000 × 0.06 sec exposures were
collected for TOI-2084/TOI-4184 and subjected to Fourier anal-
ysis in our standard reduction pipeline (see Howell et al. 2011).
Figure 5 shows our final 5σ contrast curves and the 832 nm re-
constructed speckle images. We find that TOI-2084 and TOI-
4184 are both single stars with no companion brighter than about
4–6 magnitudes below that of the target star from the diffraction
limit (20 mas) out to 1.2". At the distance of TOI-2084/TOI-4184
(d=114/69 pc), these angular limits correspond to spatial limits
of 2.3 to 137 au (TOI-2084) and 1.4 to 83 au (TOI-4184).

3. Stellar characterisation

3.1. SED analysis

To determine the basic stellar parameters, we performed an anal-
ysis of the broadband spectral energy distribution (SED) of TOI-
2084 and TOI-4184 together with the Gaia EDR3 parallax (with
no systematic offset applied; see, e.g., Stassun & Torres 2021),
in order to determine an empirical measurement of the stellar

4 FIREHOSE: https://github.com/rasimcoe/FIREHOSE

radius, following the procedures described in Stassun & Tor-
res (2016); Stassun et al. (2017); Stassun & Torres (2018). We
pulled the JHKS magnitudes from 2MASS, the W1–W3 magni-
tudes from WISE, the GBP and GRP magnitudes from Gaia, and
the grizy magnitudes from Pan-STARRS. Together, the available
photometry spans the full stellar SED over the wavelength range
0.4–10 µm (see Figure 6). We also estimated the stellar mass
according to the empirical MK based relations of Mann et al.
(2019). Deduced stellar parameters of TOI-2084 and TOI-4184
are presented in Table 2.

3.2. Spectroscopic analysis

In addition to the SED analysis, we also compared the
Shane/Kast optical spectrum of TOI-2084 to the SDSS M dwarf
templates of Bochanski et al. (2007) and found the best match to
the M2 template (Figure 7). The spectral index classification re-
lations of Lépine et al. (2003) confirm this classification. We see
no evidence of Hα emission (equivalent width limit of <1.0 Å),
indicating an age greater than ∼1.2 Gyr (West et al. 2008). We
also measured the ζ index from TiO and CaH features (Lépine
et al. 2007; Mann et al. 2013), finding ζ = 0.893±0.005, con-
sistent with a metallicity of [Fe/H] = −0.13±0.20 based on the
calibration of Mann et al. (2013).

For TOI-4184, we also analyzed its Magellan/FIRE spec-
trum using the SpeX Prism Library Analysis Toolkit (SPLAT,
Burgasser & Splat Development Team 2017). By comparing the
spectrum to NIR spectral standards defined in Kirkpatrick et al.
(2010), we find the closest match to the M5.0 standard, although
the M6.0 standard provides only a marginally poorer match (Fig-
ure 8). Thus, we adopt a spectral type of M5.5±0.5 for TOI-
4184. We also estimated the metallicity of TOI-4184 from the
Magellan/FIRE spectrum from the equivalent widths of K-band
Na i and Ca i doublets and the H2O–K2 index (Rojas-Ayala et al.
2012), and used the empirical relation between these observables
and stellar metallicity (Mann et al. 2014) to estimate [Fe/H]. Fol-
lowing Delrez et al. (2022), we calculated the uncertainty of our
estimate using a Monte Carlo approach. Adding in quadrature
the systematic uncertainty of the relation (0.07), we obtained our
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Fig. 3: TESS photometric data of TOI-2084.01 and TOI-4184.01. The gray points show the PDSAP fluxes obtained from the
SPOC pipeline. The red and blue points correspond to the location of the transit for the candidates TOI-2084.01 and TOI-4184.01,
respectively.

final estimate of [Fe/H] = −0.27 ± 0.09, indicating that TOI-
4184 is a moderately metal-poor star.

3.3. The Wide Companion to TOI-2084

TOI-2084 has a wide stellar companion,
2MASS J17170042+7244364 (hereafter TOI-2084B; G=20.7,
J=16.1), separated by 12′′.2 (∼1400 au) at position angle 191◦
east of north. Both sources are in Gaia DR3 and share a common
parallax and proper motion. The Shane/Kast optical spectrum
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Fig. 4: Ground-based photometric light curves of TOI-2081.01 (left) and TOI-4184.01 (right). The gray points are unbinned data
and the black points are data binned to 10 minutes. The coloured lines are the best-fitting transit model. The light curves are shifted
along the y-axis for visibility.

of TOI-2084B is shown in Figure 7, and is an excellent match
to the M8 dwarf template from Bochanski et al. (2007). This
classification is confirmed by the spectral index classification
relations of Lépine et al. (2003). We see no evidence of Hα
emission from this companion, although the noise is consider-
able in the 6563 Å region. Similarly, we are unable to reliably
measure a ζ index from these data, although the close match to
the dwarf template suggests a near-solar metallicity similar to
TOI-2084. There are several known planetary systems orbiting
stars in low-mass multiples, including the M4+M4.5 binary
TOI-1452 and TOI-1760 (Cadieux et al. 2022) and the early-M
triple system LTT 1445 (Winters et al. 2019). TOI-2048 and

TOI-2048B have an unusually wide separation among low-mass
planet hosts in binary systems, although there are examples of
such systems among more massive stellar binaries (Correa-Otto
& Gil-Hutton 2017).

4. Planet validation

4.1. TESS data validation

TOI-4184 (TIC 394357918) was observed in sectors 1, 28, and
39 of TESS with 2-min cadence. The Science Processing Opera-
tions Center (SPOC, Jenkins et al. (2016)) extracted the photom-
etry of sectors 1 and 28 and performed a transit search (Jenk-
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Fig. 5: Left panel: Gemini-North/Alopeke high resolution image of TOI-2084 observed on UTC June 24 2021. Right panel: Gemini-
South/Zorro high-resolution image of TOI-4184 observed on UTC December 23 2021. TOI-2084 and TOI-4184 are both single stars
with no companion brighter than 4-6 magnitudes below that of the target star.
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Fig. 6: Spectral Energy Distribution (SED) fit of TOI-2084 (right) and TOI-4184 (left). The gray curves are the best-fitting NextGen
atmosphere model, coloured symbols with error-bars are the observed fluxes, and black symbols are the model fluxes.

ins (2002); Jenkins et al. (2010), which yielded the candidate
with a 4.902 day period at a signal-to-noise ratio (S/N) of 11.
The SPOC Data Validation (DV) report Twicken et al. (2018);
Li et al. (2019) was reviewed by the TESS Object of Interest
(TOI) vetting team on May 27 2021 and TOI-4184 was released
on July 8 2021 (Guerrero et al. 2021). A second Data Valida-
tion Report was issued on the July 24 2021. The transit depth
found was 10.7 ± 0.9 ppt, corresponding to a planet radius of
2.6 ± 0.4 R⊕, and with a period of 4.90199 ± 0.00001 days.
The odd/even comparison of the depths agreed to 2.28σ. Given
the large pixel scale of 21 arcsecs, two neighboring stars were
fully or partially included in the TESS aperture, as seen in Fig-
ure 1, although TOI-4184 was identified as the likely source of
the events. The difference imaging centroid test performed for
sectors 1 to 39 constrains the location of the target star’s cata-
log location to 5.5 ± 3.3 arcsec. All additional validation tests,
including centroid offset, bootstrap, and ghost tests, were passed.

TOI-2084 (TIC 441738827) was observed in sectors 16, 19–
23, 25–26, and 48–60 with 2-min cadence by TESS. The SPOC
pipeline produced the first DV report on May 6 2020 using ex-

tracted photometry of sectors 16 and 19–23. Two candidates
were identified: .01 has a period of 6.078 days and a depth of
2.760 ± 258 ppt at an S/N of 11.2, and .02 a period of 8.149
days and a depth of 3.313 ± 327 ppt at an S/N of 10.8. The report
was reviewed by the TOI vetting team and the candidates were
released on July 15 2020. A second DV report was issued on
August 7, 2020 from the SPOC pipeline which included sectors
up to 26 of 2-min cadence data. The first candidate was found
to have a period of 6.07830 ± 0.00010 days, a transit depth of
2.8 ± 0.2 ppt with an S/N of 12.7, and a planetary radius of
2.6 ± 0.7 R⊕. Silimarly, the second candidate was found to have
a period of 8.14903 ± 0.00018 days, a transit depth of 2.8 ± 0.2
ppt with an S/N of 11.8, and a planetary radius of 2.6 ± 0.6 R⊕.
The odd/even phase-folded transits were compared and agreed to
1.45σ and 0.96σ for the .01 and .02 candidates, respectively. As
for TOI-4184, one nearby star is contaminating the aperture, but
the event was limited to be on target for the .01 candidate and
likely on target for .02. In addition, the DV report a difference
imaging centroid test result that locates the catalog position of
the target star to within 2.0±3.0 arcsec. The rest of the validation

Article number, page 8 of 22



K. Barkaoui et al.: TOI-2084 b & TOI-4184 b

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

No
rm

al
ize

d 
F K I

Na I Ca II

TiOTiO
TiO

VO VO

CaH CaH

TOI-2084
M2 STD

6550 6600 6650 6700 6750
0.4

0.6

0.8

H

Li I

6000 6500 7000 7500 8000 8500
Wavelength (Angstrom)

0.1

0.0

0.1

O-
C

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

No
rm

al
ize

d 
F

K I

Na I
Ca II

TiO

TiO TiO

VO VO

TOI-2084B
M8 STD

6550 6600 6650 6700 6750

0.00

0.25

0.50
H

Li I

7000 7250 7500 7750 8000 8250 8500 8750
Wavelength (Angstrom)

0.2

0.0

0.2

O-
C

Fig. 7: Shane/Kast red optical spectra (black lines) of TOI-2084 (left) and its wide stellar companion TOI-2084B (right) compared
to best-fit M2 and M8 SDSS spectral templates from Bochanski et al. (2007, magenta lines). The lower panels display the difference
between these spectra (black line) compared to the ±1σ measurement uncertainty (grey band). Key features are labeled, including
the strong telluric O2 band at 7600 Å (⊕). Inset boxes show close-ups of the region around the 6563 Å Hα and 6708 Å Li I lines.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Wavelength (micron)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 F
 (e

rg
 / 

(c
m

2 
m

ic
ro

n 
s)

)

K I

K I

Na I

Na I

FeH

FeH
FeH

FeH
TiO

CO

H2O
H2O

H2O

H2O

H2

TOI-4184
Wolf 47 (M5.0)
LHS 1375 (M6.0)

Fig. 8: Magellan/FIRE spectrum of TOI-4184. The SpeX Prism
spectrum of the M5.0 standard Wolf 47 and M6.0 standard LHS
1375 (Kirkpatrick et al. 2010) are shown for comparison. Strong
M dwarf spectral features are indicated, and high-telluric regions
are shaded. Lines along the bottom of the plot give the uncertain-
ties associated with the spectra.

tests were passed. The TESS full-frames images were also pro-
cessed by the Quick Look Pipeline (QLP, Huang et al. (2020)),
which extracted the photometry of TOI-2084 in sectors 15–16,
18–25, and 47–52, and confirmed the signal found in 2-min ca-
dence data.

4.2. Archival imaging

We obtained archival images of TOI-2084 and TOI-4184 in
order to discard the case of a background unresolved com-
panion producing the transit signals. Whether an eclipsing bi-
nary, a planetary candidate orbiting a background star, or sim-
ply an unaccounted background star, any of these scenarios
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Fig. 9: Generalised Lomb-Scargle periodogram (GLS, Zech-
meister & Kürster (2009)) for TOI-2084.01 (top) and TOI-
4184.01 (bottom) TESS data.

would skew the stellar and planetary parameters obtained from
our global analysis. TOI-2084 has a relatively low proper mo-
tion of 60.24 mas yr−1, which makes it challenging to assess
the background of the star’s current position. We obtained im-
ages from POSS I/DSS (Minkowski & Abell (1963)), POSS
II/DSS (Lasker et al. (1996)) and PanSTARRS1 (Chambers et al.
(2016)) in the red, infrared and z bands, respectively, and span-
ning 68 years, as shown in Figure 11. TOI-2084 has moved by
> 4′′ between the 1953 image and the 2021 image. Given the
pixel scale of 1–1.7′′, it is impossible to rule out a background
star from this diagnostic alone, though it is unlikely since we
ruled out any close companion star at a minimum angular sepa-
ration of 0.1′′ (see Section 2.4). We also compared images cen-
tered on TOI-4184 from POSS II/DSS in the blue, red and in-
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Star information

Parameter TOI-2084 TOI-4184 Source

Identifying information:

TIC 441738827 394357918

GAIA DR2 ID 1652137995942479744 4620574887039870720

2MASS ID 2MASS J17170094+7244486 2MASS J02551841-7924554

Parallax and distance:

RA [J2000] 17:17:01.09 02:55:18.83 (1)

Dec [J2000] +72:44:49.28 -79:24:52.93 (1)

Plx [mas] 8.750 ± 0.017 14.451 ± 0.027 (1)

µRA [mas yr−1] 47.73 ± 0.02 79.23 ± 0.03 (1)

µDec [mas yr−1] 36.76 ± 0.02 165.93 ± 0.03 (1)

Distance [pc] 114.29 ± 0.22 69.20 ± 0.13 (1)

Photometric properties:

TESSmag 13.326 ± 0.007 14.261 ± 0.007 (2)

Vmag [UCAC4] 15.115 ± 0.065 17.12 ± 0.20 (3)

Bmag [UCAC4] 16.668 ± 0.033 - (3)

Jmag [2MASS] 11.961 ± 0.021 12.617 ± 0.023 (4)

Hmag [2MASS] 11.356 ± 0.018 12.111 ± 0.026 (4)

Kmag [2MASS] 11.148 ± 0.020 11.867 ± 0.025 (4)

Gmag [Gaia DR3] 14.4096 ± 0.0005 15.5939 ± 0.0008 (1)

W1mag [WISE] 11.017 ± 0.023 11.685 ± 0.023 (5)

W2mag [WISE] 10.927 ± 0.020 11.472 ± 0.020 (5)

W3mag [WISE] 10.763 ± 0.061 11.371 ± 0.120 (5)

Spectroscopic and derived parameters

Teff [K] 3550 ± 50 3225 ± 75 this work

log g⋆ [dex] 4.75 ± 0.05 5.01 ± 0.04 this work

[Fe/H] [dex] −0.13 ± 0.20 −0.27 ± 0.09 this work

M⋆ [M⊙] 0.49 ± 0.03 0.240 ± 0.012 this work

R⋆ [R⊙] 0.475 ± 0.016 0.242 ± 0.013 this work

Lbol [erg s−1 cm−2] 7.90 ± 0.28 × 10−11 3.81 ± 0.18 × 10−11 this work

Av [mag] 0.02 ± 0.02 0.094 ± 0.07 this work

L⋆ [L⊙] 0.0322+0.0028
−0.0025 0.00544+0.00082

−0.00073 this work

ρ⋆ [ρ⊙] 4.21+0.17
−0.16 16.32+1.25

−1.09 this work

Age [Gyr] 7.5+4.4
−5.1 6.7+4.9

−4.7 this work

Spectral type M2±0.5 (optical) M5.5 ± 0.5 (NIR) this work

Table 2: Astrometry, photometry, and spectroscopy stellar properties of TOI-2084 and TOI-4184. (1): Gaia EDR3 Gaia Collabo-
ration et al. (2021); (2) TESS Input Catalog Stassun et al. (2018); (3) UCAC4 Zacharias et al. (2012); (4) 2MASS Skrutskie et al.
(2006); (5) WISE Cutri et al. (2021). Parameters in bold are the stellar parameters used in priors for our global analysis presented
in section 5.

frared bands taken in 1977, 1989, and 1990, respectively. Be-
cause of its high proper motion of 183.87 mas yr−1, TOI-4184
has moved by > 8′′ in the 44 years spanning the observations.
This allows us to confirm the lack of background contaminant in
the line-of-sight brighter than a limiting magnitude of ≥ 20.

4.3. Follow-up photometric validation

Photometric follow-up using ground-based facilities has two ob-
jectives: identify the source of the transit event and assess if
the transit depth is wavelength dependent. The presence of con-
taminating stars in the TESS aperture was noted for both TOI-
4184.01 and TOI-2084.01 in the TESS data validation reports.
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Fig. 11: Field images cropped on a 1’×1’ region around TOI-
2084 (top row of images) and TOI-4184 (bottom row). The cur-
rent position of the target stars is shown with the yellow circle.
Top row, from left to right: 1953 red image from POSS I/DSS,
1953 infrared image from POSS II/DSS2, 2012 z’ image from
PanSTARRS1, and 2021 I+z image from SPECULOOS-North.
Bottom row, from left to right: 1977 blue image from POSS
II/DSS2, 1989 red image from POSS II/DSS2, 1990 infrared im-
age from POSS II/DSS2, and 2021 image z’ from SPECULOOS-
South.

The closest neighboring stars are respectively TIC 650071720
at 11.5′′ with a ∆Tmag of 4.45, and TIC 441738830 at 12.4′′
with a ∆Tmag of 6.15. We reached aperture sizes of a few arc-
seconds using ground-based facilities, which allowed us to con-
firm the transit events are on the expected stars for TOI-4184.01
and TOI-2084.01. In the case of TOI-2084.02, twice at the ex-
pected transit times we detected a deep eclipse on the nearby star
TIC 1271317080 (∆T = 4.98) at 12.9" from the target, labeled
T3 in Figure 12. Thus, we rule out TOI-2084.02 as a false posi-
tive and do not consider it further. We collected photometric data
for TOI-2084.01 in various bands (I+z, zs, i’, r’, g’), spanning the
400–1100 nm wavelength ranges. We measured a matching tran-
sit depth within 1σ in all bands. Similarly, we obtained data for

TOI-4184.01 in the I+z, zs, Ic, JJ, g’ bands, covering a range be-
tween 400–1210 nm where the transits depths also agree within
1σ. The transit depths measured in different wavelengths for
TOI-2084 b and TOI-4184 b are presented in Figure 16, Table 4
and Table 5.

4.4. Statistical validation

To calculate the false positive probability (FPP) for TOI-2084.01
and TOI-4184.01, we used the Tool for Rating Interesting Can-
didate Exoplanets and Reliability Analysis of Transits Origi-
nating from Proximate Stars (TRICERATOPS ; Giacalone et al.
2021). This Bayesian tool incorporates prior knowledge of the
target star, planet occurrence rates, and stellar multiplicity to
calculate the probability that a given transit signal is due to
a transiting planet or another astrophysical source. The crite-
ria for statistical validation of a planetary candidate is stated as
FPP5 < 0.01 and NFPP6 < 0.001, which is the sum of probabil-
ities for all false positive scenarios. We ran TRICERATOPS on
the TESS light curves including the contrast curve obtained with
Gemini/Alopeke and Gemini/Zorro for both stars, TOI-2084 and
TOI-4184. We found FPP = 0.0005 and FPP = 0.0001 for
TOI-2084 b and TOI-4184 b, respectively. Because triceratops
determines that no nearby stars are capable of being sources
of astrophysical false positives, we find NFPP = 0 for both
candidates (TOI-2084.01 and TOI-4184.01). Based on these re-
sults, we consider two planets to be validated. TOI-2084.02 was
rejected as a nearby eclipsing binary (NEB) based on ground-
based photometric follow-up (see previous Section 4.3).

5. Photometric data modelling

We performed a joint fit of all observed light curves by
TESS and ground-based telescopes described in section 2, us-
ing the Metropolis-Hastings (Metropolis et al. 1953; Hastings
1970) algorithm implemented in the updated version of MCMC
(Markov-chain Monte Carlo) code described in Gillon et al.
(2012). The transit light curves are modeled using the quadratic
limb-darkening model of Mandel & Agol (2002), multiplied by
a baseline model in order to correct for several external effects
related to systematic variations (time, airmass, background, full-
width half-maximum, and position on the detector). The baseline
model was selected based on minimizing the Bayesian informa-
tion criterion (BIC) described in Schwarz (1978). Table 3 shows
for each transit light curve the selected baseline model based on
the BIC, and correction factor CF = βw×βr to rescale the photo-
metric errors, where βw and βr are white and red noises, respec-
tively (see Gillon et al. (2012) for more details). TRAPPIST-
South and TRAPPIST-North telescopes are equipped with Ger-
man equatorial mounts that have to rotate 180◦ when the merid-
ian flip is reached. This movement results the stellar images
in different position on the detector before and after the flip.
The normalization offset is included as jump parameter in our
global MCMC analysis. The transit light curve observed with
TRAPPIST-South on UTC September 20 2021 contains a merid-
ian flip at BJD = 2459478.8226 (see Table 1), which is accounted
during the global analysis.

The jump parameters sampled by the MCMC for each sys-
tem were:

– T0: the transit timing;

5 FPP: false positive probability
6 NFPP: nearby false positive probability
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Fig. 12: TOI-2084 light curves obtained with ground-based facilities. Left panel: light curve obtained with SPECULOOS-North in
the I+z filter on UTC August 17 2020. Middle panel: TOI-2084 field-of-view with nearby stars. The wide co-moving companion
TOI 2084B is directly south. Right panel: light curve obtained with LCO-McD in the Sloan-i′ filter on UTC August 26 2020. Red
and blue data points show the target (T1) and nearby star (T3) light curves, respectively. During the expected transit of TOI-2084.02,
we twice detected a deep eclipse (≈ 400 ppt) on the nearby star TIC 1271317080 (∆T = 4.98) at 12.9" from the target, labeled T3.

Planet Telescope Filter Baseline model βw βr CF

TOI-2084.01 Artemis-1.0m (obs1) I + z Time1 1.00 1.02 1.03

TOI-2084.01 TRAPPIST-N-0.6m I + z Time1, Fwhm1 1.07 1.09 1.17

TOI-2084.01 MuSCAT3-2.0m Sloan-g′ Time1, Airmass1 0.90 1.60 1.44

TOI-2084.01 MuSCAT3-2.0m Sloan-r′ Time1 1.04 1.01 1.05

TOI-2084.01 MuSCAT3-2.0m Sloan-i′ Time1 1.12 1.37 1.54

TOI-2084.01 MuSCAT3-2.0m Pan-STARRS-zs Time1 1.15 1.00 1.15

TOI-2084.01 Artemis-1.0m (obs2) I + z Time2 1.04 1.45 1.51

TOI-2084.01 TRAPPIST-N-0.6m I + z Time1, Flip 1.01 1.14 1.16

TOI-2084.01 SAINT-EX-1.0m Sloan-r′ Time1 0.66 1.44 9.48

TOI-4184.01 LCO-CTIO-1.0m Sloan-i′ Time2 0.68 1.10 0.75

TOI-4184.01 TRAPPIST-S-0.6m I + z Time1, Fwhm1 0.49 1.32 0.64

TOI-4184.01 Danish-1.54m IC Time2 0.97 1.08 1.05

TOI-4184.01 ExTrA-0.6m 1.21µm Time1 1.01 1.16 1.17

TOI-4184.01 Danish-1.54m IC Time2 0.98 1.42 1.40

TOI-4184.01 TRAPPIST-S-0.6m I + z Time1, Airmass1 0.73 1.44 1.04

TOI-4184.01 LCO-CTIO-1.0m Sloan-i′ Time2 0.80 1.15 9.13

TOI-4184.01 SPECULOOS-S-1.0m Sloan-z′ Time1 0.62 1.01 0.63

TOI-4184.01 LCO-SAAO-1.0m Sloan-i′ Time2 1.21 1.47 1.77

TOI-4184.01 LCO-SAAO-1.0m Sloan-g′ Time2 0.86 1.11 0.96

Table 3: MCMC analysis parameters. For each transit light curve selected baseline-function (based on the BIC), deduced values of
βw, βr and the coefficient correction CF = βw × βr.

– W: the transit duration (duration between the contacts 1 and
4);

– R2
p/R

2
⋆: the transit depth, where Rp is the planet radius and

R⋆ is the star radius;
– P: the orbital period of the planet;
– b = a cos(ip)/R⋆: the impact parameter in case of the circular

orbit, where ip is the planetary orbital inclination and ap is
the semi-major axis of the orbit;

–
√

e cos(ω), were ω is the argument of periastron and e is the
orbital eccentricity

– the combination q1 = (u1 + u2)2 and q2 = 0.5u1(u1 + u2)−1

(Kipping 2013), were u1 and u2 are the quadratic limb-
darkening coefficients, which are calculated from Claret
et al. (2012);

– and the stellar metallicity [Fe/H], the effective temperature
(Teff), log of the stellar density (log(ρ⋆)), and log of the stel-
lar mass (log(M⋆)).

For each star, we applied a Gaussian prior distribution on the
stellar parameters obtained from SED and spectroscopy (which
are R⋆, M⋆, [Fe/H], log g⋆ and Teff). For each system, we per-
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formed two MCMC analyses, the first assuming a circular or-
bit, and the second assuming an eccentric orbit. The results
are compatible with a circular orbit based on the Bayes factor
BC = exp (−∆BIC/2). The eccentric solutions give e∼0.2+0.3

−0.2 for
TOI-2084.01 and e∼0.1+0.2

−0.1 for TOI-4184.01.
For each transit light curve, a preliminary analysis composed

of one Markov chain of 105 steps was performed in order to cal-
culate the correction factor CF. Then a global MCMC analysis
of three Markov chains of 105 steps was performed to derive
the stellar and planetary physical parameters. The convergence
of each Markov chain was checked using the statistical test of
Gelman & Rubin (1992). Derived parameters of TOI-2084 and
TOI-4184 are presented in Tables 2, 4 and 5.

6. Planet searches using the TESS photometry

In this section, we searched for additional planetary candidates
that might remain unnoticed by SPOC and the QLP due to their
detection thresholds. To this end we used our custom pipeline
SHERLOCK 7, originally presented by Pozuelos et al. (2020) and
Demory et al. (2020), and used in several studies (see, e.g., Wells
et al. 2021; Van Grootel et al. 2021; Schanche et al. 2022).

SHERLOCK allows the user to explore TESS data to re-
cover known planets, alerted candidates, and search for new
periodic signals, which may hint at the existence of ex-
tra transiting planets. In short, the pipeline has six mod-
ules to (1) download and prepare the light curves from
the MAST using the lightkurve (Lightkurve Collaboration
et al. 2018), (2) search for planetary candidates through the
tls (Hippke & Heller 2019), (3) perform a semi-automatic vet-
ting of the interesting signals, (4) compute a statistical vali-
dation using the TRICERATOPS (Giacalone et al. 2021), (5)
model the signals to refine their ephemerides employing the
allesfitter package (Günther & Daylan 2021), and (6)
compute observational windows from ground-based observa-
tories to trigger a follow-up campaign. We refer the reader
to Delrez et al. (2022) and Pozuelos et al. (2023) for recent
SHERLOCK applications and further details.

For TOI-4184, we searched for extra planets analyzing the
three available sectors (1, 28, and 39) together, exploring orbital
periods from 0.3 to 30 d. For TOI-2084.01, we conducted two
independent searches: 1) corresponding to the nominal mission,
that is, 8 sectors from 16 to 26, and 2) corresponding to the ex-
tended mission, that is, 13 sectors from 48 to 60 (see Figure 3).
In both searches, we explored the orbital periods from 0.3 to 50.
The motivation to follow this strategy is twofold. On the one
hand, the high computational cost of exploring at the same time
21 sectors, while adding many sectors might hint at the presence
of very long orbital periods (> 50 days), the transit probabili-
ties rapidly decrease for such scenarios. On the other hand, this
strategy allows us to compare any finding in the nominal mission
with the extended mission, providing an extra vetting step for the
signals’ credibility.

We successfully recovered the TOIs released by SPOC, the
TOI-4184.01 with an orbital period of 4.90 days and TOI-
2084.01 with an orbital period of 6.08 days. In the subsequent
runs performed by SHERLOCK , we did not find any other signal
that hinted at the existence of extra transiting planets. In addi-
tion to TOI-2084.01, we also recovered a signal corresponding

7 SHERLOCK (Searching for Hints of Exoplanets fRom Lightcurves
Of spaCe-based seeKers) code is fully available on GitHub: https:
//github.com/franpoz/SHERLOCK

to TOI-2084.02, which was already classified as a false posi-
tive using ground-based observations described Section 4.3 and
displayed in Figure Figure 12. Surprisingly, we did not recover
the signal with the orbital period issued by TESS, 8.14 days,
but its first subharmonic, which corresponds to an orbital period
of 4.07 days. Then, we used the two modules implemented in
SHERLOCK for vetting and statistical validation of candidates
with this signal. On the one hand, using the vetting module, we
found that even and odd transits yielded different transit depths;
∼2.3 and ∼1.1 ppt for even and odd transits, respectively. This in-
dicated that our detection algorithm was confusing the secondary
eclipse as the primary and yielding half of the real orbital period,
which confirmed that the real orbital period is 8.14 days. On the
other hand, the validation module found that its FFP is ∼0.26 and
NFPP is ∼0.1. According to Giacalone et al. (2021), these values
place this candidate in the false positive area in the NFPP-FPP
plane. Hence, these analyses agreed with the eclipsing binary
nature of this signal.

7. Results and discussion

We presented the validation and discovery of TOI-2084 b and
TOI-4184 b by the TESS mission (see phase-folded light curves
in Figure 2 and individual transits in Figure 3), which were
confirmed through follow-up photometric measurements col-
lected by SPECULOOS-South/North, SAINT-EX, TRAPPIST-
South/North, MuSCAT3, LCOGT, Danish and ExTrA telescopes
(see phase-folded light curves in Figure 4). The host stars
are characterized by combining optical spectrum obtained by
Shane/Kast and Magellan/FIRE, SED and stellar evolutionary
models. Then, we performed a global analysis of space TESS and
ground-based photometric data to derive the stellar and planetary
physical parameters for each system. Table 2 shows the astrome-
try, photometry, and spectroscopy stellar properties of TOI-2084
and TOI-4184. Derived stellar and planetary physical parame-
ters from our global analysis are shown in Table 4 and Table 5.
Figure 9 shows the periodogram for the system. Both planets are
well detected in TESS data. Figure A.1 and Figure A.2 show the
parameters posterior distributions for each system.

7.1. TOI-2084 b and TOI-4184 b

TOI-2084 is a Kmag = 11.15 M2-type star with an effective tem-
perature of T = 3553 ± 50K, a surface gravity of log g⋆ =
4.75 ± 0.05 dex, a mass of M⋆ = 0.49 ± 0.03 M⊙ and a radius
R⊙ = 0.475 ± 0.016 R⊙ (derived from SED analysis including
Gaia EDR3 parallax) and a metallicity of [Fe/H] = −0.13±0.20
(from Shane/Kast spectrum). It has a wide (∼1400 au) M8 co-
moving companion, with a likely mass of 0.1 M⊙. TOI-2084 b
is a sub-Neptune-sized planet orbiting around the host primary
star every 6.08 days, which has a radius of Rp = 2.47 ± 0.13 R⊕,
an equilibrium temperature of Teq = 527 ± 8 K, an incident flux
of S p = 12.8 ± 0.8 times that of Earth. We find that TOI-2084 b
has a predicted mass of Mp = 6.74+5.31

−2.81 M⊕ using the Chen &
Kipping (2017) relationship.

TOI-4184 is a Kmag = 11.86 M5.5±0.5 metal-poor star
with a metallicity of [Fe/H] = −0.27 ± 0.09 dex (from the
Magellan/FIRE spectrum), an effective temperature of Teff =
3225 ± 75 K, a surface gravity of log g⋆ = 5.01 ± 0.04 dex, a
mass of M⋆ = 0.240 ± 0.012 M⊙ and a radius R⊙ = 0.242 ±
0.013 R⊙. TOI-4184 b is a sub-Neptune-sized planet that com-
pletes its orbit around its host star in 4.9 days, has a radius of
Rp = 2.43 ± 0.21 R⊕, an irradiation of S p = 4.8 ± 0.4 Earth ir-
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Fig. 13: Mass-radius diagram of exoplanets with mass-radius
measurements better than 25% from TEPCat and for our candi-
dates, color-coded by their equilibrium temperature. Two-layer
models from Zeng et al. (2016) are displayed with different lines
and colors. "Earth-like" here means a composition of 30% Fe
and 70% MgSiO3. The 2% H2 line represents a composition con-
sisting of a 98% Earth-like rocky core and a 2% H2 envelope by
mass, while the 49% H2O + 2% H2 line corresponds to a compo-
sition comprising a 49% Earth-like rocky core, a 49% H2O layer,
and a 2% H2 envelope by mass. Earth and Venus are identified
in this plot as pale blue and orange circles, respectively.

radiation, and an equilibrium temperature of Teq = 412 ± 8 K.
We used the Chen & Kipping (2017) relationship to predict the
plausible mass of TOI-4184 b, which is Mp = 6.60+5.20

−2.75 M⊕.
Figure 10 shows the boundaries of the sub-Neptune-

desert region determined by Mazeh et al. (2016). TOI-
2084 b and TOI-4184 b are placed at the edge of the sub-
Jovian desert in the radius-period plane. Combining the in-
frared brightness of the host star and predicted semi-amplitude
of the radial-velocity (KTOI−2084b = 3.8+3.0

−1.6 m/s for TOI-
2084 b and KTOI−4184b = 6.4+5.0

−2.7 m/s for TOI-4184 b) using
Chen & Kipping (2017)’s relationship, make TOI-2084 b and
TOI-4184 b good targets for radial velocity follow-up with
high-resolution spectrographs (e.g., CARMENES, Quirrenbach
et al. (2014), ESO-VLT-8.0m/ESPRESSO, Pepe et al. (2021),
Gemini-North-8.0m/MAROON-X, Seifahrt et al. (2020) and
ESO-3.6m/NIRPS, Bouchy (2021)) to constrain the planetary
masses, bulk densities and other orbital parameters.

7.2. Characterization prospects

Super-Earths and sub-Neptunes are amongst the most abundant
type of exoplanets. Yet their formation, atmospheric composi-
tion, and interior structure are not well understood, as a variety
of compositions can match the average density of these planets.
TOI-2084 b and TOI-4184 b are part of this mysterious popula-
tion. The small size and proximity of the host stars as well as
their brightness in the infrared make them amenable to be fur-
ther observed by most JWST modes for studying atmospheric
compositions.

Given the measured properties, we made a first exploratory
guess of the planet’s composition. We compared their masses
and radii with the models from Zeng et al. (2016), shown in Fig-
ure 13. The models predict that TOI-2084 b and TOI-4184 b may
have low-density volatiles, such as water, an H/He atmosphere,
or a combination of both. Below, we further explore these
plausible atmospheres and assess the potential for atmospheric
characterization of both TOI-2084 b and TOI-4184 b planets.

As a first approximation of the suitability of both planets
for atmospheric investigations, we calculate the transmission
spectroscopic metric (TSM) from Kempton et al. (2018), which
was developed based on simulations with NIRISS. We estimate
the TSMs for TOI-2084 b and TOI-4184 b to be 26.7+14.7

−10.3
and 57.7+25.7

−20.1, respectively. With 90 being the threshold for
this category of planets, it is worth noting that this metric
solely considers the predicted strength of an atmospheric
detection when ranking the planets. Having TSM values
below the threshold does not necessarily mean that detailed
atmospheric studies are impossible or challenging with current
facilities. In other words, these metrics do not serve as the sole
criterion for determining the best targets for atmospheric studies.

To further evaluate the feasibility of characterizing the at-
mosphere of both planets, we computed synthetic transit spectra
from optical to infrared wavelengths (0.5–12 µm) at low spectral
resolutions for different atmospheric scenarios (cloud-free H2-
and cloudy H2- rich, water-rich). We used petitRADTRANS
(Mollière et al. 2019) to compute the model transmission
spectra, using the stellar parameters from Table 2 and the plan-
etary parameters from Tables 4 & 5. Our test H2-rich models
assume atmospheric chemical equilibrium computed using the
FastChem code (Stock et al. 2018) with isothermal profiles at
the equilibrium temperature, solar abundances, collisionally
induced absorption (CIA) by H2-H2 and H2-He, and Rayleigh
scattering. We include as absorbers H2O, CO2, CO, CH4, NH3,
C2H4, and C2H2. For the water-rich scenarios, we assume that
the planets are enveloped in a clear, isothermal water-dominated
atmosphere composed of 95% H2O and 5% CO2. The model
includes the H2O and CO2 Rayleigh scattering cross-sections.
We also compare it to a pure water planet (100% H2O) with
H2O Rayleigh scattering. An example of the resulting spectra
for TOI-4184b is shown in Figure 14.

As predicted by earlier studies (e.g., Greene et al. (2016);
Mollière (2017); Chouqar et al. (2020)), the amplitude of the
transmission spectra is highly dependent on the presence and
altitude of the cloud layer, and on the average molecular weight
of the atmosphere: the higher the average molecular weight of
the atmosphere, the lower the scale height, and thus the lower
the amplitude of the transit spectroscopy signal. The transmis-
sion spectra for the H-rich atmospheres show strong absorption
features due to H2O, CH4, and NH3 over the wavelength range
0.5–12 µm (see Figure 14). The spectroscopic modulations of
the cloud-free spectra are on the order of 50–350 ppm and
100–700 ppm for TOI-2084 b and TOI-4184 b, respectively.
The cloudy models present smaller absorption features due
to the suppression of contributions from deeper atmospheric
layers. The features are essentially muted in the cases with 10−4

bar cloud top model for both planets (not shown here). For
scenarios discussed above, the mean molecular weight varies
from µ = 2 g/mol for an atmosphere dominated by molecular
hydrogen to µ = 18 g/mol for atmospheres dominated by
heavier molecules like H2O which explains the weak spectral
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Fig. 14: Synthetic transmission spectra of TOI-4184b for different atmospheric compositions. Left panel: transmission spectra for
cloud-free H2-rich, water-rich (95% H2O and 5% CO2), and pure water atmospheres. Right panel: transmission spectra for H2-rich
cloudy atmosphere with cloud layers at different altitudes (10−2, 10−3, and cloud-free).
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Fig. 15: Simulated transmission spectra of TOI-4184 b using
NIRISS, NIRSpec, and MIRI instrument modes. This calcula-
tion assumes a cloudy H2-rich atmosphere with a cloud top at
10−2 bar. The initially modeled transmission spectrum is plotted
in grey. The spectra have been binned to a resolution of R = 15.

features seen in the water-rich atmosphere. Additionally, an
atmosphere with 95% H2O and 5% CO2 can be distinguished
from an atmosphere with 100% H2O because the transit depth
within the CO2 band at 4.5 µm would be higher relative to
the transit depths in the H2O bands, as shown in Figure 14.
TOI-2084 and TOI-4184 are faint enough to be observable with
all of JWST’s instruments. Using the JWST ETC PandExo
(Batalha et al. 2017), we evaluated the detectability of the
atmospheres of TOI-2084b and TOI-4184b with NIRISS-SOSS
(0.6–2.8 µm), NIRSpec-G395M (2.88–5.20 µm) and MIRI-LRS
(5–12 µm) instrumental modes for the clear and 10−2 bar cloudy
H2-rich and water-rich atmospheric scenarios. Figure 15 shows
an example result for a cloudy H2-rich atmosphere with a
cloud top at 10−2 bar for TOI-4184b. We find that NIRSpec
and NIRISS observations are the most promising for this range
of simulated atmospheres. A single transit observation with
NIRSpec-G395M mode would be sufficient for robust detection
of the molecular features in the clear H2-rich scenarios for both
planets, whereas NIRISS-SOSS would require 2 transits. Two to
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Fig. 16: Transit depths measured for multi-band photometric
follow-up of TOI-2084.01 (top panel) and TOI-4184.01 (bottom
panel). Solid horizontal lines correspond to the TESS measured
transit depth.

three transits with NIRSpec-G395M could indeed characterize
the atmospheres of TOI-2084 and TOI-4184, respectively,
if they have clouds at 10−2 bar. The spectral coverage of
transit spectra could be extended to NIR wavelengths with
NIRISS-SOSS observations, but this would require three to four
times more transits to give a similar signal-to-noise ratio as of
NIRSpec-G395M.
In summary, our simulations indicate that TOI-2084 b and
TOI-4184 b will be great assets for exploring the nature of
the atmospheres of sub-Neptunian exoplanets with JWST and
upcoming next-generation space telescopes.
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Parameter Symbol Value Unit

TOI-2084
Mean density ρ⋆ 4.23+0.17

−0.16 ρ⊙
Stellar mass M⋆ 0.453+0.029

−0.027 M⊙
Stellar radius R⋆ 0.475+0.014

−0.014 R⊙
Luminosity L⋆ 0.0322+0.0027

−0.0028 L⊙
Effective temperature Teff 3551+49

−52 K
Quadratic LD u1,Sloan−z′ 0.15 ± 0.09
Quadratic LD u2,Sloan−z′ 0.39 ± 0.08
Quadratic LD u1,Sloan−i′ 0.35 ± 0.12
Quadratic LD u2,Sloan−i′ 0.35 ± 0.08
Quadratic LD u1,Sloan−r′ 0.39 ± 0.11
Quadratic LD u2,Sloan−r′ 0.33 ± 0.08
Quadratic LD u1,Sloan−g′ 0.44 ± 0.11
Quadratic LD u2,Sloan−g′ 0.35 ± 0.09
Quadratic LD uI+z′ 0.26 ± 0.06
Quadratic LD uI+z′ 0.36 ± 0.05
Quadratic LD u1,TESS 0.21 ± 0.10
Quadratic LD u2,TESS 0.38 ± 0.07
TOI-2084 b
Planet/star area ratio (Rp/R⋆)2

Sloan−z′ 2267+186
−179 ppm

(Rp/R⋆)2
Sloan−i′ 1928+248

−241 ppm
(Rp/R⋆)2

Sloan−r′ 1886+295
−327 ppm

(Rp/R⋆)2
Sloan−g′ 2138+493

−442 ppm
(Rp/R⋆)2

I+z′ 2199+489
−454 ppm

(Rp/R⋆)2
TESS 1950+271

−273 ppm
Impact parameter b′ = a cos ip/R⋆ 0.336 ± 0.061 R⋆
Transit duration W 122 ± 2 min
Transit-timing T0 2458741.07323 ± 0.00065 BJDTDB

Orbital period P 6.0784247 ± 0.0000096 days
Scaled semi-major axis ap/R⋆ 22.66 ± 0.39 -
Orbital semi-major axis ap 0.05006 ± 0.00103 AU
Orbital inclination ip 89.15 ± 0.15 deg
Radius Rp 2.47+0.13

−0.13 R⊕
Equilibrium temperature Teq 527 ± 8 K
Irradiation S p 12.8 ± 0.8 S ⊕
Predicted Mass Mp 6.74+5.31

−2.81 M⊕
Predicted RV semi-amplitude K 3.77+2.97

−1.57 m/s

Table 4: The TOI-2084 system parameters derived from our global MCMC analysis (medians and 1σ).
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Parameter Symbol Value Unit

TOI-4184
Mean density ρ⋆ 16.32+1.25

−1.09 ρ⊙
Stellar mass M⋆ 0.2109+0.029

−0.026 M⊙
Stellar radius R⋆ 0.2347+0.015

−0.015 R⊙
Luminosity L⋆ 0.00544+0.00082

−0.00074 L⊙
Effective temperature Teff 3238+48

−49 K
Quadratic LD u1,TESS 0.21 ± 0.029
Quadratic LD u2,TESS 0.42 ± 0.021
Quadratic LD u1,Sloan−z′ 0.17 ± 0.04
Quadratic LD u2,Sloan−z′ 0.45 ± 0.02
Quadratic LD u1,Sloan−i′ 0.32 ± 0.04
Quadratic LD u2,Sloan−i′ 0.35 ± 0.04
Quadratic LD u1,Sloan−g′ 0.41 ± 0.03
Quadratic LD u2,Sloan−g′ 0.39 ± 0.02
Quadratic LD uI+z′ 0.23 ± 0.02
Quadratic LD uI+z′ 0.41 ± 0.01
Quadratic LD u1,Ic 0.26 ± 0.05
Quadratic LD u2,Ic 0.37 ± 0.04
Quadratic LD u1,1.21µm 0.02 ± 0.01
Quadratic LD u2,1.21µm 0.37 ± 0.01
TOI-4184 b
Planet/star area ratio (Rp/R⋆)2

TESS 9115+937
−1000 ppm

(Rp/R⋆)2
Sloan−z′ 9491+560

−566 ppm
(Rp/R⋆)2

Sloan−i′ 8461+540
−509 ppm

(Rp/R⋆)2
Sloan−g′ 10982+3400

−2800 ppm
(Rp/R⋆)2

I+z′ 7869+970
−951 ppm

(Rp/R⋆)2
Ic 8141+840

−770 ppm
(Rp/R⋆)2

1.21µm 9334+2600
−2000 ppm

Impact parameter b′ = a cos ip/R⋆ 0.306 ± 0.061+0.069
−0.094 R⋆

Transit duration W 77 ± 1 min
Transit-timing T0 2459483.65667 ± 0.00023 BJDTDB

Orbital period P 4.9019804 ± 0.0000052 days
Scaled semi-major axis ap/R⋆ 30.79 ± 0.96 -
Orbital semi-major axis ap 0.0336 ± 0.0015 AU
Orbital inclination ip 89.43 ± 0.16 deg
Radius Rp 2.43+0.21

−0.21 R⊕
Equilibrium temperature Teq 412 ± 8 K
Irradiation S p 4.8 ± 0.4 S ⊕
Predicted Mass Mp 6.60+5.20

−2.75 M⊕
Predicted RV semi-amplitude K 6.38+5.03

−2.66 m/s

Table 5: The TOI-4184 system parameters derived from our global MCMC analysis (medians and 1σ).
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Appendix A: Posterior probability distribution for the TOI-2084 and TOI-4184 systems

Fig. A.1: Posterior probability distribution for the TOI-2084 system stellar and planetary physical parameters fitted using our MCMC
code as described in Methods. The vertical lines present the median value. The vertical dashed lines present the median value for
each derived parameter.
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Fig. A.2: Posterior probability distribution for the TOI-4184 system stellar and planetary physical parameters fitted using our MCMC
code as described in Methods. The vertical lines present the median value. The vertical dashed lines present the median value for
each derived parameter.
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