214 research outputs found

    A mouse model of the schizophrenia-associated 1q21.1 microdeletion syndrome exhibits altered mesolimbic dopamine transmission

    Get PDF
    Abstract 1q21.1 hemizygous microdeletion is a copy number variant leading to eightfold increased risk of schizophrenia. In order to investigate biological alterations induced by this microdeletion, we generated a novel mouse model (Df(h1q21)/+) and characterized it in a broad test battery focusing on schizophrenia-related assays. Df(h1q21)/+ mice displayed increased hyperactivity in response to amphetamine challenge and increased sensitivity to the disruptive effects of amphetamine and phencyclidine hydrochloride (PCP) on prepulse inhibition. Probing of the direct dopamine (DA) pathway using the DA D1 receptor agonist SKF-81297 revealed no differences in induced locomotor activity compared to wild-type mice, but Df(h1q21)/+ mice showed increased sensitivity to the DA D2 receptor agonist quinpirole and the D1/D2 agonist apomorphine. Electrophysiological characterization of DA neuron firing in the ventral tegmental area revealed more spontaneously active DA neurons and increased firing variability in Df(h1q21)/+ mice, and decreased feedback reduction of DA neuron firing in response to amphetamine. In a range of other assays, Df(h1q21)/+ mice showed no difference from wild-type mice: gross brain morphology and basic functions such as reflexes, ASR, thermal pain sensitivity, and motor performance were unaltered. Similarly, anxiety related measures, baseline prepulse inhibition, and seizure threshold were unaltered. In addition to the central nervous system-related phenotypes, Df(h1q21)/+ mice exhibited reduced head-to tail length, which is reminiscent of the short stature reported in humans with 1q21.1 deletion. With aspects of both construct and face validity, the Df(h1q21)/+ model may be used to gain insight into schizophrenia-relevant alterations in dopaminergic transmission

    The most accurate determination of the 8B half-life

    Get PDF
    Beta decay is a primary source of information of the structure of a nucleus. An accurate measurement of the half-life of a nucleus is essential for the proper determination of the reduced Gammow-Teller transition probability B(GT). In this work, we present an experiment using a compact set-up of Si-telescope detectors to measure the half-life of the 8B nucleus. Three independent measurements have been analysed, obtaining the values 771.9(17) ms, 773.9(18) ms, and 770.9(27) ms. The value of the half-life obtained as the weighted averaged with the previous published measures is 771.17(94) ms which is a factor 3.2 of improvement in the uncertainty of the half-life

    The experiments to determine the electron capture and β-decay of 8B into the highly excited states of 8Be

    Get PDF
    The main goal of this work is to study the structure of the highest energy states in 8Be populated following the β+-decay and the electron capture (EC) of 8B. With this aim, two experiments were performed at ISOLDE-CERN in 2017 and 2018. The first experiment had the aim to resolve the 2+ doublet at 16.6 and 16.9 MeV, in order to study their isospin mixing. The second experiment aimed to determine a value or give an experimental upper limit to the branching ratio of the exotic EC-p decay. In this paper, we present the experimental setups and we discuss the analysis and present the preliminary results obtained so far

    Unexpected high-energy γ emission from decaying exotic nuclei

    Get PDF
    Abstract The N = 52 Ga 83 β decay was studied at ALTO. The radioactive 83Ga beam was produced through the ISOL photofission technique and collected on a movable tape for the measurement of γ-ray emission following β decay. While β-delayed neutron emission has been measured to be 56–85% of the decay path, in this experiment an unexpected high-energy 5–9 MeV γ-ray yield of 16(4)% was observed, coming from states several MeVs above the neutron separation threshold. This result is compared with cutting-edge QRPA calculations, which show that when neutrons deeply bound in the core of the nucleus decay into protons via a Gamow–Teller transition, they give rise to a dipolar oscillation of nuclear matter in the nucleus. This leads to large electromagnetic transition probabilities which can compete with neutron emission, thus affecting the β-decay path. This process is enhanced by an excess of neutrons on the nuclear surface and may thus be a common feature for very neutron-rich isotopes, challenging the present understanding of decay properties of exotic nuclei

    First Evidence of Shape Coexistence in the Ni-78 Region : Intruder 0(2)(+) State in Ge-80

    Get PDF
    The N = 48 Ge-80 nucleus is studied by means of beta-delayed electron-conversion spectroscopy at ALTO. The radioactive Ga-80 beam is produced through the isotope separation on line photofission technique and collected on a movable tape for the measurement of gamma and e(-) emission following beta decay. An electric monopole E0 transition, which points to a 639(1) keV intruder 0(2)(+) state, is observed for the first time. This new state is lower than the 2(1)(+) level in Ge-80, and provides evidence of shape coexistence close to one of the most neutron-rich doubly magic nuclei discovered so far, Ni-78. This result is compared with theoretical estimates, helping to explain the role of monopole and quadrupole forces in the weakening of the N = 50 gap at Z = 32. The evolution of intruder 0(2)(+) states towards Ni-78 is discussed.Peer reviewe

    Rb-37(97)60 : The Cornerstone of the Region of Deformation around A similar to 100

    Get PDF
    Excited states of the neutron-rich nuclei Rb-97,Rb- 99 were populated for the first time using the multistep Coulomb excitation of radioactive beams. Comparisons of the results with particle-rotor model calculations provide clear identification for the ground-state rotational band of Rb-97 as being built on the pi g(9/2) [431] 3/2(+) Nilsson-model configuration. The ground-state excitation spectra of the Rb isotopes show a marked distinction between single-particle-like structures below N = 60 and rotational bands above. The present study defines the limits of the deformed region around A similar to 100 and indicates that the deformation of Rb-97 is essentially the same as that observed well inside the deformed region. It further highlights the power of the Coulomb-excitation technique for obtaining spectroscopic information far from stability. The Rb-99 case demonstrates the challenges of studies with very short-lived postaccelerated radioactive beams.Peer reviewe

    Identification of the crossing point at N=21 between normal and intruder configurations

    Get PDF
    The beta(-) decay of Mg-34 was used to study the Al-34 nucleus through. spectroscopy at the Isotope Separator On-Line facility of CERN. Previous studies identified two beta-decaying states in Al-34 having spin-parity assignments J(pi) = 4(-) dominated by the normal configuration pi(d(5/2))(-1)circle times nu(f(7/2)) and J(pi) = 1(+) by the intruder configuration pi(d(5/2))(-1) circle times nu(d(3/2))(-1) (f(7/2))(2). Their unknown ordering and relative energy have been the subject of debate for the placement of Al-34 inside or outside the N = 20 "island of inversion." We report here that the 1(+) intruder lies only 46.6 keV above the 4(-) ground state. In addition, a new half-life of T-1/2 = 44.9(4) ms, that is twice as long as the previously measured 20(10) ms, has been determined for Mg-34. Large-scale shell-model calculations with the recently developed SDPF-U-MIX interaction are compared with the new data and used to interpret the mechanisms at play at the very border of the N = 20 island of inversion.Peer reviewe

    Beta-delayed proton emission from 20Mg

    Get PDF
    Beta-delayed proton emission from 20 Mg has been measured at ISOLDE, CERN, with the ISOLDE Decay Station (IDS) setup including both charged-particle and gamma-ray detection capabilities. A total of 27 delayed proton branches were measured including seven so far unobserved. An updated decay scheme, including three new resonances above the proton separation energy in 20 Na and more precise resonance energies, is presented. Beta-decay feeding to two resonances above the Isobaric Analogue State (IAS) in 20 Na is observed. This may allow studies of the 4032.9(2.4)keV resonance in 19 Ne through the beta decay of 20 Mg, which is important for the astrophysically relevant reaction 15O( α \alpha , γ \gamma )19Ne . Beta-delayed protons were used to obtain a more precise value for the half-life of 20 Mg, 91.4(1.0)ms

    First Accurate Normalization of the beta-delayed alpha Decay of N-16 and Implications for the C-12(alpha,gamma)O-16 Astrophysical Reaction Rate

    Get PDF
    The C-12(alpha,gamma)O-16 reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced a width, gamma(11), of the bound 1(-) level in O-16 is particularly important to determine the cross section. The magnitude of gamma(11) is determined via sub-Coulomb a-transfer reactions or the beta-delayed a decay of N-16, but the latter approach is presently hampered by the lack of sufficiently precise data on the beta-decay branching ratios. Here we report improved branching ratios for the bound 1(-) level [b(beta,11) = (5.02 +/- 0.10) x 10(-2)] and for beta-delayed alpha emission [b(beta alpha) = (1.59 +/- 0.06) x 10(-5)]. Our value for b(beta alpha) is 33% larger than previously held, leading to a substantial increase in gamma(11). Our revised value for gamma(11) is in good agreement with the value obtained in a-transfer studies and the weighted average of the two gives a robust and precise determination of gamma(11), which provides significantly improved constraints on the C-12(alpha,gamma) cross section in the energy range relevant to hydrostatic He burning.Peer reviewe

    133In: A Rosetta Stone for decays of r-process nuclei

    Get PDF
    The β\beta decays from both the ground state and a long-lived isomer of 133^{133}In were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to β\beta, γ\gamma, and neutron spectroscopy, the comparative partial half-lives (logft) have been measured for all their dominant β\beta-decay channels for the first time, including a low-energy Gamow-Teller transition and several First-Forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their β\beta decays selectively populate only a few isolated neutron unbound states in 133^{133}Sn. Precise energy and branching-ratio measurements of those resonances allow us to benchmark β\beta-decay theories at an unprecedented level in this region of the nuclear chart. The results show good agreement with the newly developed large-scale shell model (LSSM) calculations. The experimental findings establish an archetype for the β\beta decay of neutron-rich nuclei southeast of 132^{132}Sn and will serve as a guide for future theoretical development aiming to describe accurately the key β\beta decays in the rapid-neutron capture (r-) process
    corecore