31 research outputs found

    Ultraviolet astronomical spectrograph calibration with laser frequency combs from nanophotonic waveguides

    Full text link
    Astronomical precision spectroscopy underpins searches for life beyond Earth, direct observation of the expanding Universe and constraining the potential variability of physical constants across cosmological scales. Laser frequency combs can provide the critically required accurate and precise calibration to the astronomical spectrographs. For cosmological studies, extending the calibration with such astrocombs to the ultraviolet spectral range is highly desirable, however, strong material dispersion and large spectral separation from the established infrared laser oscillators have made this exceedingly challenging. Here, we demonstrate for the first time astronomical spectrograph calibrations with an astrocomb in the ultraviolet spectral range below 400 nm. This is accomplished via chip-integrated highly nonlinear photonics in periodically-poled, nano-fabricated lithium niobate waveguides in conjunction with a robust infrared electro-optic comb generator, as well as a chip-integrated microresonator comb. These results demonstrate a viable route towards astronomical precision spectroscopy in the ultraviolet and may contribute to unlocking the full potential of next generation ground- and future space-based astronomical instruments

    Ultraviolet astronomical spectrograph calibration with laser frequency combs from nanophotonic waveguides

    No full text
    Astronomical precision spectroscopy underpins searches for life beyond Earth, direct observation of the expanding Universe and constraining the potential variability of physical constants across cosmological scales. Laser frequency combs can provide the critically required accurate and precise calibration to the astronomical spectrographs. For cosmological studies, extending the calibration with such astrocombs to the ultraviolet spectral range is highly desirable, however, strong material dispersion and large spectral separation from the established infrared laser oscillators have made this exceedingly challenging. Here, we demonstrate for the first time astronomical spectrograph calibrations with an astrocomb in the ultraviolet spectral range below 400 nm. This is accomplished via chip-integrated highly nonlinear photonics in periodically-poled, nano-fabricated lithium niobate waveguides in conjunction with a robust infrared electro-optic comb generator, as well as a chip-integrated microresonator comb. These results demonstrate a viable route towards astronomical precision spectroscopy in the ultraviolet and may contribute to unlocking the full potential of next generation ground- and future space-based astronomical instruments

    Material-driven fibronectin fibrillogenesis

    No full text
    Material-driven fibronectin fibrillogenesis is a novel route to engineer the network structure and biological activity of fibronectin fibrillar matrices in analogy with their physiological cell-mediated assembly. We identify specific surface chemistries that promote the cell-free formation of physiological-like fibronectin fibrils in a time- and concentration-dependent process. Our most recent and relevant results, reviewed in the chapter, demonstrate the role of this material-induced fibrillogenesis in cell adhesion, extracellular matrix organization and degradation, and cell differentiation

    Introducing the CTA concept

    Get PDF
    The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project

    CTA – the World’s largest ground-based gamma-ray observatory

    Get PDF
    International audienc

    CTA contributions to the 33rd International Cosmic Ray Conference (ICRC2013)

    Full text link
    Compilation of CTA contributions to the proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), which took place in 2-9 July, 2013, in Rio de Janeiro, BrazilComment: Index of CTA conference proceedings at the ICRC2013, Rio de Janeiro (Brazil). v1: placeholder with no arXiv links yet, to be replaced once individual contributions have been all submitted. v2: final with arXiv links to all CTA contributions and full author lis

    Cherenkov Telescope Array Contributions to the 35th International Cosmic Ray Conference (ICRC2017)

    Full text link
    List of contributions from the Cherenkov Telescope Array Consortium presented at the 35th International Cosmic Ray Conference, July 12-20 2017, Busan, Korea.Comment: Index of Cherenkov Telescope Array conference proceedings at the ICRC2017, Busan, Kore

    Monte Carlo Simulations and Validation of NectarCAM, a Medium Sized Telescope Camera for CTA

    No full text
    The upcoming Cherenkov Telescope Array (CTA) ground-based gamma-ray observatory will open up our view of the very high energy Universe, offering an improvement in sensitivity of 5-10 times that of previous experiments. NectarCAM is one of the proposed cameras for the Medium-Sized Telescopes (MST) which have been designed to cover the core energy range of CTA, from 100 GeV to 10 TeV. The final camera will be capable of GHz sampling and provide a field of view of 8 degrees with its 265 modules of 7 photomultiplier each (for a total of 1855 pixels). In order to validate the performance of NectarCAM, a partially-equipped prototype has been constructed consisting of only the inner 61-modules. It has so far undergone testing at the integration test-bench facility in CEA Paris-Saclay (France) and on a prototype of the MST structure in Adlershof (Germany). To characterize the performance of the prototype, Monte Carlo simulations were conducted using a detailed model of the 61 module camera in the CORSIKA/sim_telarray framework. This contribution provides an overview of this work including the comparison of trigger and readout performance on test-bench data and trigger and image parameterization performance during on-sky measurements
    corecore