71 research outputs found

    Deep Molecular Characterization of Milder Spinal Muscular Atrophy Patients Carrying the c.859G>C Variant in SMN2

    Get PDF
    Spinal muscular atrophy (SMA) is a severe neuromuscular disorder caused by biallelic loss or pathogenic variants in the SMN1 gene. Copy number and modifier intragenic variants in SMN2, an almost identical paralog gene of SMN1, are known to influence the amount of complete SMN proteins. Therefore, SMN2 is considered the main phenotypic modifier of SMA, although genotype-phenotype correlation is not absolute. We present eleven unrelated SMA patients with milder phenotypes carrying the c.859G>C-positive modifier variant in SMN2. All were studied by a specific NGS method to allow a deep characterization of the entire SMN region. Analysis of two homozygous cases for the variant allowed us to identify a specific haplotype, Smn2-859C.1, in association with c.859G>C. Two other cases with the c.859G>C variant in their two SMN2 copies showed a second haplotype, Smn2-859C.2, in cis with Smn2-859C.1, assembling a more complex allele. We also identified a previously unreported variant in intron 2a exclusively linked to the Smn2-859C.1 haplotype (c.154-1141G>A), further suggesting that this region has been ancestrally conserved. The deep molecular characterization of SMN2 in our cohort highlights the importance of testing c.859G>C, as well as accurately assessing the SMN2 region in SMA patients to gain insight into the complex genotype-phenotype correlations and improve prognostic outcomes

    Research priorities for European paediatric emergency medicine

    Get PDF
    Objective Research in European Paediatric Emergency Medicine (REPEM) network is a collaborative group of 69 paediatric emergency medicine (PEM) physicians from 20 countries in Europe, initiated in 2006. To further improve paediatric emergency care in Europe, the aim of this study was to define research priorities for PEM in Europe to guide the development of future research projects. Design and Setting We carried out an online survey in a modified three-stage Delphi study. Eligible participants were members of the REPEM network. In stage 1, the REPEM steering committee prepared a list of research topics. In stage 2, REPEM members rated on a 6-point scale research topics and they could add research topics and comment on the list for further refinement. Stage 3 included further prioritisation using the Hanlon Process of Prioritisation (HPP) to give more emphasis to the feasibility of a research topic. Results Based on 52 respondents (response rates per stage varying from 41% to 57%), we identified the conditions 'fever', 'sepsis' and 'respiratory infections', and the processes/interventions 'biomarkers', 'risk stratification' and 'practice variation' as common themes of research interest. The HPP identified highest priority for 4 of the 5 highest prioritised items by the Delphi process, incorporating prevalence and severity of each condition and feasibility of undertaking such research. Conclusions While the high diversity in emergency department (ED) populations, cultures, healthcare systems and healthcare delivery in European PEM prompts to focus on practice variation of ED conditions, our defined research priority list will help guide further collaborative research efforts within the REPEM network to improve PEM care in Europe.publishersversionPeer reviewe

    Targeting the ERG oncogene with splice-switching oligonucleotides as a novel therapeutic strategy in prostate cancer

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordBackground The ERG oncogene, a member of the ETS family of transcription factor encoding genes, is a genetic driver of prostate cancer. It is activated through a fusion with the androgen-responsive TMPRSS2 promoter in 50% of cases. There is therefore significant interest in developing novel therapeutic agents that target ERG. We have taken an antisense approach and designed morpholino-based oligonucleotides that target ERG by inducing skipping of its constitutive exon 4. Methods We designed antisense morpholino oligonucleotides (splice-switching oligonucleotides, SSOs) that target both the 5′ and 3′ splice sites of ERG’s exon 4. We tested their efficacy in terms of inducing exon 4 skipping in two ERG-positive cell lines, VCaP prostate cancer cells and MG63 osteosarcoma cells. We measured their effect on cell proliferation, migration and apoptosis. We also tested their effect on xenograft tumour growth in mice and on ERG protein expression in a human prostate cancer radical prostatectomy sample ex vivo. Results In VCaP cells, both SSOs were effective at inducing exon 4 skipping, which resulted in a reduction of overall ERG protein levels up to 96 h following a single transfection. SSO-induced ERG reduction decreased cell proliferation, cell migration and significantly increased apoptosis. We observed a concomitant reduction in protein levels for cyclin D1, c-Myc and the Wnt signalling pathway member β-catenin as well as a marker of activated Wnt signalling, p-LRP6. We tested the 3′ splice site SSO in MG63 xenografts in mice and observed a reduction in tumour growth. We also demonstrated that the 3′ splice site SSO caused a reduction in ERG expression in a patient-derived prostate tumour tissue cultured ex vivo. Conclusions We have successfully designed and tested morpholino-based SSOs that cause a marked reduction in ERG expression, resulting in decreased cell proliferation, a reduced migratory phenotype and increased apoptosis. Our initial tests on mouse xenografts and a human prostate cancer radical prostatectomy specimen indicate that SSOs can be effective for oncogene targeting in vivo. As such, this study encourages further in vivo therapeutic studies using SSOs targeting the ERG oncogene.Prostate Cancer U
    corecore