279 research outputs found

    R-Symmetry and the Topological Twist of N=2 Effective Supergravities of Heterotic Strings

    Get PDF
    We discuss R-symmetries in locally supersymmetric N=2 gauge theories coupled to hypermultiplets which can be thought of as effective theories of heterotic superstring models. In this type of supergravities a suitable R-symmetry exists and can be used to topologically twist the theory: the vector multiplet containing the dilaton-axion field has different R-charge assignments with respect to the other vector multiplets. Correspondingly a system of coupled instanton equations emerges, mixing gravitational and Yang--Mills instantons with triholomorphic hyperinstantons and axion-instantons. For the tree-level classical special manifolds ST(n)=SU(1,1)/U(1)×SO(2,n)/(SO(2)ST(n)=SU(1,1)/U(1)\times SO(2,n)/(SO(2) ×SO(n))\times SO(n)) R-symmetry with the specified properties is a continuous symmetry, but for the quantum corrected manifolds ST^(n){\hat {ST}}(n) a discrete R--group of electric--magnetic duality rotations is sufficient and we argue that it exists.Comment: 40 pages, plain LaTeX. Final version to appear on IJMP

    A Search for Non-Perturbative Dualities of Local N=2N=2 Yang--Mills Theories from Calabi--Yau Threefolds

    Get PDF
    The generalisation of the rigid special geometry of the vector multiplet quantum moduli space to the case of supergravity is discussed through the notion of a dynamical Calabi--Yau threefold. Duality symmetries of this manifold are connected with the analogous dualities associated with the dynamical Riemann surface of the rigid theory. N=2 rigid gauge theories are reviewed in a framework ready for comparison with the local case. As a byproduct we give in general the full duality group (quantum monodromy) for an arbitrary rigid SU(r+1)SU(r+1) gauge theory, extending previous explicit constructions for the r=1,2r=1,2 cases. In the coupling to gravity, R--symmetry and monodromy groups of the dynamical Riemann surface, whose structure we discuss in detail, are embedded into the symplectic duality group ΓD\Gamma_D associated with the moduli space of the dynamical Calabi--Yau threefold.Comment: Latex. Version of previous paper with enlarged and revised appendix 35 pages, plain LaTe

    Endoscopic full-thickness resection for T1 early rectal cancer : a case series and video report

    Get PDF
    Background and study aims Endoscopic treatment of malignant colorectal polyps is often challenging, especially for early rectal cancer (ERC) localized close to the dentate line. Conversely, the surgical approach may result in temporary or definitive stoma and in frequent post-surgical complications. The Full-Thickness Resection Device (FTRD (R)) System (Ovesco Endoscopy, Tubingen, Germany) is a novel system that, besides having other indications, appears to be promising for wall-thickness excision of intestinal T1 carcinoma following incomplete endoscopic resection. However, follow-up data on patients treated with this device are scarce, particularly for ERC. Patients and methods Six consecutive patients with incomplete endoscopic resection of T1-ERC were treated with the FTRD and their long-term outcomes were evaluated based on a detailed clinical and instrumental assessment. Results The endoscopic en bloc full-thickness resection was technically feasible in all patients. The histopathologic analysis showed a complete endoscopic resection in all cases, and a full-thickness excision in four. Neither complications, nor disease recurrence were observed during the 1-year follow-up period. Conclusions The FTRD System is a promising tool for treating ERC featuring a residual risk of disease recurrence after incomplete endoscopic mucosal resection in patients unfit for surgery or refusing a surgical approach

    TDP-43 as a potential biomarker for amyotrophic lateral sclerosis:a systematic review and meta-analysis

    Get PDF
    Abstract Background Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are incurable, progressive and fatal neurodegenerative diseases with patients variably affected clinically by motor, behavior, and cognitive deficits. The accumulation of an RNA-binding protein, TDP-43, is the most significant pathological finding in approximately 95% of ALS cases and 50% of FTD cases, and discovery of this common pathological signature, together with an increasing understanding of the shared genetic basis of these disorders, has led to FTD and ALS being considered as part of a single disease continuum. Given the widespread aggregation and accumulation of TDP-43 in FTD-ALS spectrum disorder, TDP-43 may have potential as a biomarker in these diseases. Methods We therefore conducted a systematic review and meta-analysis to evaluate the diagnostic utility of TDP-43 detected in the cerebrospinal fluid (CSF) of patients with FTD-ALS spectrum disorder. Results From seven studies, our results demonstrate that patients with ALS have a statistically significantly higher level of TDP-43 in CSF (effect size 0.64, 95% CI: 0.1–1.19, p = 0.02). Conclusions These data suggest promise for the use of CSF TDP-43 as a biomarker for ALS

    Behavioural changes in dairy cows with lameness in an automatic milking system

    Get PDF
    There is a tendency worldwide for the automation of farms; this has included the introduction of automatic milking systems (AMS) in the dairy industry. Lameness in dairy cows is highly prevalent and painful. These impacts potentially affect not only animal welfare, but also farm economies. Three independent observational studies were carried out to assess the impact of lameness on the behaviour of zero grazed high yielding Holstein cows managed in an AMS. The aim of the first study was to examine the impact of lameness on rumination time, the second study investigated differences between lame and sound dairy cows in total eating time and the third study assessed the impact of lameness on milking behaviour (frequency and time of visits to the AMS). In the first study data from 150 cows were used to analyse rumination (collected using rumination collars) for the 48hr following locomotion scoring. A multilevel linear regression demonstrated that lameness had a small but significant negative association (coefficient: -7.88 (SE: 3.93)) with rumination. In the second study the behaviour of eleven matched lame and sound pairs of cows at the feed face was analysed for 24 hours after locomotion scoring. Each feeding behaviour variable (total duration time, frequency of feeding bouts and length of bouts) was analysed using individual single level regression models. There was a significant negative association between total feeding time and lameness (coefficient: -73.65 (SE: 25.47)) and the frequency of feeding bouts and lameness (-9.93 (2.49)). Finally, the third observational study used 38 matched pairs of lame and sound cows. Data on the number and timings of visits to the AMS were collected for 24 hours after each locomotion score and analysed using a binomial logistic regression model. There was a significant difference in AMS visits between groups; lame animals visiting the robot less frequently than sound cows (median difference 0.50 milking visits; T = 256.0; N = 25; p = 0.01) and lame cows were 0.33 times less likely to visit the AMS between 24:01 and 06:00. Results from these studies reveal that lameness in an AMS affected feeding behaviour, rumination and AMS visits. All of these impacts are likely to have negative consequences for farm profitability, but also implications for the health and welfare of the animals

    1H, 13C and 15N assignment of the GNA1946 outer membrane lipoprotein from Neisseria meningitidis

    Get PDF
    GNA1946 (Genome-derived Neisseria Antigen 1946) is a highly conserved exposed outer membrane lipoprotein from Neisseria meningitidis bacteria of 287 amino acid length (31 kDa). Although the structure of NMB1946 has been solved recently by X-Ray crystallography, understanding the behaviour of GNA1946 in aqueuos solution is highly relevant for the discovery of the antigenic determinants of the protein that will possibly lead to a more efficient vaccine development against virulent serogroup B strain of N.meningitidis. Here we report almost complete 1H, 13C and 15N resonance assignments of GNA1946 (residues 10–287) in aqueous buffer solution

    In the matter of the request of Liberty Mutual Fire Insurance Company, a Massachusetts domestic stock insurance company, to redomesticate to the state of Wisconsin

    Get PDF
    Submitted by Nuzia Santos ([email protected]) on 2018-08-24T16:36:28Z No. of bitstreams: 1 Phosphatidyl Inositol 3 Kinase-Gamma Balances.pdf: 10035595 bytes, checksum: 5a61fb2c618990d4314d36db3868ee2e (MD5)Approved for entry into archive by Nuzia Santos ([email protected]) on 2018-08-24T16:44:27Z (GMT) No. of bitstreams: 1 Phosphatidyl Inositol 3 Kinase-Gamma Balances.pdf: 10035595 bytes, checksum: 5a61fb2c618990d4314d36db3868ee2e (MD5)Made available in DSpace on 2018-08-24T16:44:27Z (GMT). No. of bitstreams: 1 Phosphatidyl Inositol 3 Kinase-Gamma Balances.pdf: 10035595 bytes, checksum: 5a61fb2c618990d4314d36db3868ee2e (MD5) Previous issue date: 2018Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Vírus Respiratórios e do Sarampo. Rio de Janeiro, RJ, Brazil / Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil / Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Fisiologia e Biofísica. Laboratório de Imunologia e Mecânica Pulmonar. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hanseníase. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hanseníase. Rio de Janeiro, RJ, Brazil / UNIFRANZ. Coordinación Nacional de Investigación. La Paz, Bolivia.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Morfologia. Belo Horizonte, MG, BrazilUniversidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil / Universidade de São Paulo. Departamento de Farmacologia. Laboratório de Inflamação e Dor. Universidade de São Paulo. Ribeirão Preto, SP, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Vírus Respiratórios e do Sarampo. Rio de Janeiro, RJ, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil / Fundação Oswaldo Cruz. Instituto René Rachou. Laboratório de Imunologia de Doenças Virais. Belo Horizonte, MG, BrazilUniversidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil / Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hanseníase. Rio de Janeiro, RJ, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de RNA de Interferência Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Vírus Respiratórios e do Sarampo. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto René Rachou. Laboratório de Imunologia de Doenças Virais. Belo Horizonte, MG, BrazilUniversidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil / Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil / Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Fisiologia e Biofísica. Laboratório de Imunologia e Mecânica Pulmonar. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Bioquímica e Imunologia. Laboratório de Imunofarmacologia. Belo Horizonte, MG, Brazil.Influenza A virus (IAV) infection causes severe pulmonary disease characterized by intense leukocyte infiltration. Phosphoinositide-3 kinases (PI3Ks) are central signaling enzymes, involved in cell growth, survival, and migration. Class IB PI3K or phosphatidyl inositol 3 kinase-gamma (PI3Kγ), mainly expressed by leukocytes, is involved in cell migration during inflammation. Here, we investigated the contribution of PI3Kγ for the inflammatory and antiviral responses to IAV. PI3Kγ knockout (KO) mice were highly susceptible to lethality following infection with influenza A/WSN/33 H1N1. In the early time points of infection, infiltration of neutrophils was higher than WT mice whereas type-I and type-III IFN expression and p38 activation were reduced in PI3Kγ KO mice resulting in higher viral loads when compared with WT mice. Blockade of p38 in WT macrophages infected with IAV reduced levels of interferon-stimulated gene 15 protein to those induced in PI3Kγ KO macrophages, suggesting that p38 is downstream of antiviral responses mediated by PI3Kγ. PI3Kγ KO-derived fibroblasts or macrophages showed reduced type-I IFN transcription and altered pro-inflammatory cytokines suggesting a cell autonomous imbalance between inflammatory and antiviral responses. Seven days after IAV infection, there were reduced infiltration of natural killer cells and CD8+ T lymphocytes, increased concentration of inflammatory cytokines in bronchoalveolar fluid, reduced numbers of resolving macrophages, and IL-10 levels in PI3Kγ KO. This imbalanced environment in PI3Kγ KO-infected mice culminated in enhanced lung neutrophil infiltration, reactive oxygen species release, and lung damage that together with the increased viral loads, contributed to higher mortality in PI3Kγ KO mice compared with WT mice. In humans, we tested the genetic association of disease severity in influenza A/H1N1pdm09-infected patients with three potentially functional PIK3CG single-nucleotide polymorphisms (SNPs), rs1129293, rs17847825, and rs2230460. We observed that SNPs rs17847825 and rs2230460 (A and T alleles, respectively) were significantly associated with protection from severe disease using the recessive model in patients infected with influenza A(H1N1)pdm09. Altogether, our results suggest that PI3Kγ is crucial in balancing antiviral and inflammatory responses to IAV infection

    The Top-Implart Proton Linear Accelerator: Interim Characteristics of the 35 Mev Beam

    Get PDF
    In the framework of the Italian TOP-IMPLART project (Regione Lazio), ENEA-Frascati, ISS and IFO are developing and constructing the first proton linear accelerator based on an actively scanned beam for tumor radiotherapy with final energy of 150 MeV. An important feature of this accelerator is modularity: an exploitable beam can be delivered at any stage of its construction, which allows for immediate characterization and virtually continuous improvement of its performance. Currently, a sequence of 3 GHz accelerating modules combined with a commercial injector operating at 425 MHz delivers protons up to 35 MeV. Several dosimetry systems were used to obtain preliminary characteristics of the 35-MeV beam in terms of stability and homogeneity. Short-term stability and homogeneity better than 3% and 2.6%, respectively, were demonstrated; for stability an improvement with respect to the respective value obtained for the previous 27 MeV beam

    The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress

    Get PDF
    The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.Cell Death and Differentiation advance online publication, 12 June 2015; doi:10.1038/cdd.2015.81

    GZMKhigh CD8+ T effector memory cells are associated with CD15high neutrophil abundance in non-metastatic colorectal tumors and predict poor clinical outcome.

    Get PDF
    CD8(+) T cells are a major prognostic determinant in solid tumors, including colorectal cancer (CRC). However, understanding how the interplay between different immune cells impacts on clinical outcome is still in its infancy. Here, we describe that the interaction of tumor infiltrating neutrophils expressing high levels of CD15 with CD8(+) T effector memory cells (T(EM)) correlates with tumor progression. Mechanistically, stromal cell-derived factor-1 (CXCL12/SDF-1) promotes the retention of neutrophils within tumors, increasing the crosstalk with CD8(+) T cells. As a consequence of the contact-mediated interaction with neutrophils, CD8(+) T cells are skewed to produce high levels of GZMK, which in turn decreases E-cadherin on the intestinal epithelium and favors tumor progression. Overall, our results highlight the emergence of GZMK(high) CD8(+) T(EM) in non-metastatic CRC tumors as a hallmark driven by the interaction with neutrophils, which could implement current patient stratification and be targeted by novel therapeutics
    corecore