514 research outputs found

    Correlations in the Parton Recombination Model

    Full text link
    We describe how parton recombination can address the recent measurement of dynamical jet-like two particle correlations. In addition we discuss the possible effect realistic light-cone wave-functions including higher Fock-states may have on the well-known elliptic flow valence-quark number scaling law.Comment: 4 pages, two figures, proceedings of the 18th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2005 (QM 2005), Budapest, Hungary, 4-9 Aug 200

    Thermal Recombination: Beyond the Valence Quark Approximation

    Full text link
    Quark counting rules derived from recombination models agree well with data on hadron production at intermediate transverse momenta in relativistic heavy-ion collisions. They convey a simple picture of hadrons consisting only of valence quarks. We discuss the inclusion of higher Fock states that add sea quarks and gluons to the hadron structure. We show that, when recombination occurs from a thermal medium, hadron spectra remain unaffected by the inclusion of higher Fock states. However, the quark number scaling for elliptic flow is somewhat affected. We discuss the implications for our understanding of data from the Relativistic Heavy Ion Collider.Comment: 5 pages, 5 figure

    On the 3-particle scattering continuum in quasi one dimensional integer spin Heisenberg magnets

    Full text link
    We analyse the three-particle scattering continuum in quasi one dimensional integer spin Heisenberg antiferromagnets within a low-energy effective field theory framework. We exactly determine the zero temperature dynamical structure factor in the O(3) nonlinear sigma model and in Tsvelik's Majorana fermion theory. We study the effects of interchain coupling in a Random Phase Approximation. We discuss the application of our results to recent neutron-scattering experiments on the Haldane-gap material CsNiCl3{\rm CsNiCl_3}.Comment: 8 pages of revtex, 5 figures, small changes, to appear in PR

    The scintillation and ionization yield of liquid xenon for nuclear recoils

    Get PDF
    XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S1) and ionization signal (S2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield \leff and the absolute ionization yield Q_y, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of \leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our \leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is 4 keV. A knowledge of the ionization yield \Qy is necessary to establish the trigger threshold of the experiment. The ionization yield \Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.Comment: 8 pages, 9 figures. To be published in Nucl. Instrum. Methods

    A New Phase of Matter: Quark-Gluon Plasma Beyond the Hagedorn Critical Temperature

    Get PDF
    I retrace the developments from Hagedorn's concept of a limiting temperature for hadronic matter to the discovery and characterization of the quark-gluon plasma as a new state of matter. My recollections begin with the transformation more than 30 years ago of Hagedorn's original concept into its modern interpretation as the "critical" temperature separating the hadron gas and quark-gluon plasma phases of strongly interacting matter. This was followed by the realization that the QCD phase transformation could be studied experimentally in high-energy nuclear collisions. I describe here my personal effort to help develop the strangeness experimental signatures of quark and gluon deconfinement and recall how the experimental program proceeded soon to investigate this idea, at first at the SPS, then at RHIC, and finally at LHC. As it is often the case, the experiment finds more than theory predicts, and I highlight the discovery of the "perfectly" liquid quark-gluon plasma at RHIC. I conclude with an outline of future opportunities, especially the search for a critical point in the QCD phase diagram.Comment: To appear in {\em Melting Hadrons, Boiling Quarks} by Rolf Hagedorn and Johan Rafelski (editor), Springer Publishers, 2015 (open access

    Design and Performance of the XENON10 Dark Matter Experiment

    Full text link
    XENON10 is the first two-phase xenon time projection chamber (TPC) developed within the XENON dark matter search program. The TPC, with an active liquid xenon (LXe) mass of about 14 kg, was installed at the Gran Sasso underground laboratory (LNGS) in Italy, and operated for more than one year, with excellent stability and performance. Results from a dark matter search with XENON10 have been published elsewhere. In this paper, we summarize the design and performance of the detector and its subsystems, based on calibration data using sources of gamma-rays and neutrons as well as background and Monte Carlo simulations data. The results on the detector's energy threshold, energy and position resolution, and overall efficiency show a performance that exceeds design specifications, in view of the very low energy threshold achieved (<10 keVr) and the excellent energy resolution achieved by combining the ionization and scintillation signals, detected simultaneously

    Dimerization and Incommensurate Spiral Spin Correlations in the Zigzag Spin Chain: Analogies to the Kondo Lattice

    Full text link
    Using the density matrix renormalization group and a bosonization approach, we study a spin-1/2 antiferromagnetic Heisenberg chain with near-neighbor coupling J1J_1 and frustrating second-neighbor coupling J2J_2, particularly in the limit J2>>J1J_2 >> J_1. This system exhibits both dimerization and incommensurate spiral spin correlations. We argue that this system is closely related to a doped, spin-gapped phase of the one-dimensional Kondo lattice.Comment: 18 pages, with 13 embedded encapsulated Postscript figures, uses epsf.sty. Corrects a misstatement about the pitch angle, and contains additional reference

    Decoherence in trapped ions due to polarization of the residual background gas

    Full text link
    We investigate the mechanism of damping and heating of trapped ions associated with the polarization of the residual background gas induced by the oscillating ions themselves. Reasoning by analogy with the physics of surface electrons in liquid helium, we demonstrate that the decay of Rabi oscillations observed in experiments on 9Be+ can be attributed to the polarization phenomena investigated here. The measured sensitivity of the damping of Rabi oscillations with respect to the vibrational quantum number of a trapped ion is also predicted in our polarization model.Comment: 26 pdf pages with 5 figures, http://www.df.ufscar.br/~quantum
    corecore