918 research outputs found

    Optimized arrays for 2-D resistivity survey lines with a large number of electrodes

    Get PDF
    Previous studies show that optimized arrays generated using the ‘Compare R’ method have significantly better resolution than conventional arrays. This method determines the optimum set of arrays by selecting those that give the maximum model resolution. The number of possible arrays (the comprehensive data set) increases with the fourth power of the number of electrodes. The optimization method faces practical limitations for 2-D survey lines with more than 60 electrodes where the number of possible arrays exceeds a million. Several techniques are proposed to reduce the calculation time for such survey lines. A single-precision version of the ‘Compare R’ algorithm using a new ranking function reduces the calculation time by two to eight times while providing results similar to the double-precision version. Recent improvements in computer GPU technology can reduce the calculation time by about seven times. The calculation time is reduced by half by using the fact that arrays that are symmetrical about the center of the line produce identical changes in the model resolution values. It is further reduced by more than thirty times by calculating the Sherman–Morrison update for all the possible two-electrode combinations, which are then used to calculate the model resolution values for the four-electrode arrays. The calculation time is reduced by more then ten times by using a subset of the comprehensive data set consisting of only symmetrical arrays. Tests with a synthetic model and field data set show that optimized arrays derived from this subset produce inversion models with differences of less than 10% from those derived using the full comprehensive data set. The optimized data sets produced models that are more accurate than the Wenner–Schlumberger array data sets in all the tests

    Entangled quantum tunneling of two-component Bose-Einstein condensates

    Full text link
    We examine the quantum tunneling process in Bose condensates of two interacting species trapped in a double well configuration. We discover the condition under which particles of different species can tunnel as pairs through the potential barrier between two wells in opposition directions. This novel form of tunneling is due to the interspecies interaction that eliminates the self- trapping effect. The correlated motion of tunneling atoms leads to the generation of quantum entanglement between two macroscopically coherent systems.Comment: 4 pages, 3 figure

    Nature of the quantum phase transitions in the two-dimensional hardcore boson model

    Full text link
    We use two Quantum Monte Carlo algorithms to map out the phase diagram of the two-dimensional hardcore boson Hubbard model with near (V1V_1) and next near (V2V_2) neighbor repulsion. At half filling we find three phases: Superfluid (SF), checkerboard solid and striped solid depending on the relative values of V1V_1, V2V_2 and the kinetic energy. Doping away from half filling, the checkerboard solid undergoes phase separation: The superfluid and solid phases co-exist but not as a single thermodynamic phase. As a function of doping, the transition from the checkerboard solid is therefore first order. In contrast, doping the striped solid away from half filling instead produces a striped supersolid phase: Co-existence of density order with superfluidity as a single phase. One surprising result is that the entire line of transitions between the SF and checkerboard solid phases at half filling appears to exhibit dynamical O(3) symmetry restoration. The transitions appear to be in the same universality class as the special Heisenberg point even though this symmetry is explicitly broken by the V2V_2 interaction.Comment: 10 pages, 14 eps figures, include

    Experimental and theoretical near edge x ray absorption fine structure studies of NO

    Get PDF
    Experimental near edge x ray absorption fine structure NEXAFS spectra of the nitrosonium NO ion are presented and theoretically analyzed. While neutral NO has an open shell, the cation is a closed shell species, which for NEXAFS leads to the simplicity of a closed shell spectrum. Compared to neutral NO, the electrons in the cation experience a stronger Coulomb potential, which introduces a shift of the ionization potential towards higher energies, a depletion of intensity in a large interval above the amp; 960; amp; 8727; resonance, and a shift of the amp; 963; amp; 8727; resonance from the continuum to below the ionization threshold. NEXAFS features at the nitrogen and oxygen K edges of NO are compared, as well as NEXAFS features at the nitrogen edges of the isoelectronic closed shell species NO , N2, and N2

    Atom lasers: production, properties and prospects for precision inertial measurement

    Full text link
    We review experimental progress on atom lasers out-coupled from Bose-Einstein condensates, and consider the properties of such beams in the context of precision inertial sensing. The atom laser is the matter-wave analog of the optical laser. Both devices rely on Bose-enhanced scattering to produce a macroscopically populated trapped mode that is output-coupled to produce an intense beam. In both cases, the beams often display highly desirable properties such as low divergence, high spectral flux and a simple spatial mode that make them useful in practical applications, as well as the potential to perform measurements at or below the quantum projection noise limit. Both devices display similar second-order correlations that differ from thermal sources. Because of these properties, atom lasers are a promising source for application to precision inertial measurements.Comment: This is a review paper. It contains 40 pages, including references and figure

    Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    Identified mid-rapidity particle spectra of π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (RdAuR_{dAu}) between protons (p+pˉ)(p+\bar{p}) and charged hadrons (hh) in the transverse momentum range 1.2<pT<3.01.2<{p_{T}}<3.0 GeV/c is measured to be 1.19±0.051.19\pm0.05(stat)±0.03\pm0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p+pˉ)/h(p+\bar{p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from transverse momentum 1.8 GeV/c to 3. GeV/

    Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV

    Full text link
    We present the first measurement of directed flow (v1v_1) at RHIC. v1v_1 is found to be consistent with zero at pseudorapidities η\eta from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4<η<42.4 < |\eta| < 4. The latter observation is similar to data from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. Back-to-back jets emitted out-of-plane are found to be suppressed more if compared to those emitted in-plane, which is consistent with {\it jet quenching}. Using the scalar product method, we systematically compared azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure

    Azimuthal anisotropy: the higher harmonics

    Full text link
    We report the first observations of the fourth harmonic (v_4) in the azimuthal distribution of particles at RHIC. The measurement was done taking advantage of the large elliptic flow generated at RHIC. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
    corecore