222 research outputs found
The Structure, Kinematics and Physical Properties of the Molecular Gas in the Starburst Nucleus of NGC 253
We present 5.2" x 2.6" resolution interferometry of CO J=1-0 emission from
the starburst galaxy NGC 253. The high spatial resolution of these new data, in
combination with recent high resolution maps of 13CO, HCN and near-infrared
emission, allow us for the first time to link unambiguously the gas properties
in the central starburst of NGC 253 with its bar dynamics. We confirm that the
star formation results from bar-driven gas flows as seen in "twin peaks"
galaxies. Two distinct kinematic features are evident from the CO map and
position-velocity diagram: a group of clouds rotating as a solid body about the
kinematic center of the galaxy, and a more extended gas component associated
with the near-infrared bar. We model the line intensities of CO, HCN and 13CO
to infer the physical conditions of the gas in the nucleus of NGC 253. The
results indicate increased volume densities around the radio nucleus in a
twin-peaks morphology. Compared with the CO kinematics, the gas densities
appear highest near the radius of a likely inner Linblad resonance, and
slightly lead the bar minor axis. This result is similar to observations of the
face-on, twin-peaks galaxy NGC 6951, and is consistent with models of starburst
generation due to gas inflow along a bar.Comment: To appear in the ApJ, 28 pages, 12 figure file
Dense Cloud Formation and Star Formation in a Barred Galaxy
We investigate the properties of massive, dense clouds formed in a barred
galaxy and their possible relation to star formation, performing a
two-dimensional hydrodynamical simulation with the gravitational potential
obtained from the 2Mass data from the barred spiral galaxy, M83. Since the
environment for cloud formation and evolution in the bar region is expected to
be different from that in the spiral arm region, barred galaxies are a good
target to study the environmental effects on cloud formation and the subsequent
star formation. Our simulation uses for an initial 80 Myr an isothermal flow of
non-self gravitating gas in the barred potential, then including radiative
cooling, heating and self-gravitation of the gas for the next 40 Myr, during
which dense clumps are formed. We identify many cold, dense gas clumps for
which the mass is more than (a value corresponding to the
molecular clouds) and study the physical properties of these clumps. The
relation of the velocity dispersion of the identified clump's internal motion
with the clump size is similar to that observed in the molecular clouds of our
Galaxy. We find that the virial parameters for clumps in the bar region are
larger than that in the spiral arm region. From our numerical results, we
estimate star formation in the bar and spiral arm regions by applying the
simple model of Krumholtz and McKee (2005). The mean relation between star
formation rate and gas surface density agrees well with the observed
Kennicutt-Schmidt relation. The SFE in the bar region is of the
spiral arm region. This trend is consistent with observations of barred
galaxies.Comment: 9 pages, 16 figures. Accepted for publication in the MNRA
Recommended from our members
Low density molecular gas in the galaxy
The distributions and physical conditions in molecular gas in the interstellar medium have been investigated in both the Galaxy and towards external galaxies. For example, Galactic plane surveys in the CO J =1-0 line with the Columbia 1.2-m telescope and with the Five College Radio Astronomy Observatory (FCRAO) 14-m telescopes have been able to trace spiral arms more clearly than HI surveys have been able to reveal, and indicate that most of molecular mass is contained in Giant Molecular Clouds (GMCs). Extensive maps of the whole Milky Way showed two prominent features, the 4-kpc molecular ring and the Galactic center. The physical conditions in the Galaxy have been studied by comparing the intensity of CO J =1-0 line with those of other lines, e.g., 13CO J =1-0, higher J transitions of CO, and dense gas tracers such as HCO+, CS, and HCN.
Previous studies were however strongly biased towards regions where CO emission was known to be intense. The radial distribution of molecular hydrogen shows that most of the H2 gas which is indirectly traced by observations of its associated CO emission, originates from the inner Galaxy (Dame 1993). Extending outwards from a galacto-centric distance of ~7 kpc, the H2 mass surface density decreases dramatically, and HI dominates over H2 in the outer Galaxy. What are physical conditions of molecular gas where the CO emission is relatively weak, and can we really trace all of the molecular gas through obervations of CO? These kinds of problems have not been solved yet, but are addressed in our study
Intermittent maser flare around the high mass young stellar object G353.273+0.641 I: data & overview
We have performed VLBI and single-dish monitoring of 22 GHz HO maser
emission from the high mass young stellar object G353.273+0.641 with VERA (VLBI
Exploration of Radio Astrometry) and Tomakamai 11-m radio telescope. Two maser
flares have been detected, separated almost two years. Frequent VLBI monitoring
has revealed that these flare activities have been accompanied by structural
change of the prominent shock front traced by H2O maser alignments. We have
detected only blue-shifted emissions and all maser features have been
distributed within very small area of 200 200 au in spite of
wide velocity range (> 100 km s). The light curve shows notably
intermittent variation and suggests that the HO masers in G353.273+0.641
are excited by episodic radio jet. The time-scale of \sim2 yr and
characteristic velocity of \sim500 km s also support this
interpretation. Two isolated velocity components of C50 (-53 \pm 7 km s)
and C70 (-73 \pm 7 km s) have shown synchronised linear acceleration of
the flux weighted V_{\rmn{LSR}} values (\sim-5 km s yr) during
the flare phase. This can be converted to the lower-limit momentum rate of 1.1
\times 10 M_{\sun} km s yr. Maser properties are quite
similar to that of IRAS 20126+4104 especially. This corroborates the previous
suggestion that G353.273+0.641 is a candidate of high mass protostellar object.
The possible pole-on geometry of disc-jet system can be suitable for direct
imaging of the accretion disc in this case.Comment: 13 pages, 5 figures accepted for publication in MNRA
LABOCA observations of nearby, active galaxies
We present large scale 870 micron maps of the nearby starburst galaxies
NGC253, NGC4945 and the nearest giant elliptical radio galaxy Centaurus A (NGC
5128) obtained with the newly commissioned Large Apex Bolometer Camera (LABOCA)
operated at the APEX telescope. Our continuum images reveal for the first time
the distribution of cold dust at a angular resolution of 20" across the entire
optical disks of NGC253 and NGC4945 out to a radial distance of 10' (7.5 kpc).
In NGC5128 our LABOCA image also shows, for the first time at submillimeter
wavelengths, the synchrotron emission associated with the radio jet and the
inner radio lobes. From an analysis of the 870 micron emission in conjunction
with ISO-LWS, IRAS and long wavelengths radio data we find temperatures for the
cold dust in the disks of all three galaxies of 17-20 K, comparable to the dust
temperatures in the disk of the Milky Way. The total gas mass in the three
galaxies is determined to be 2.1, 4.2 and 2.8 x 10^9 solar masses for NGC253,
NGC4945 and NGC5128, respectively. A detailed comparison between the gas masses
derived from the dust continuum and the integrated CO(1-0) intensity in NGC253
suggests that changes of the CO luminosity to molecular mass conversion factor
are mainly driven by a metallicity gradient and only to a lesser degree by
variations of the CO excitation. An analysis of the synchrotron spectrum in the
northern radio lobe of NGC5128 shows that the synchrotron emission from radio
to the ultraviolet wavelengths is well described by a broken power law and that
the break frequency is a function of the distance from the radio core as
expected for aging electrons. We derive an outflow speed of ~0.5c at a distance
of 2.6kpc from the center, consistent with the speed derived in the vicinity of
the nucleus.Comment: 12 pages, 11 figures. Accepted for publication in A&
Nuclear Bar Catalyzed Star Formation: 13^CO, C18^O and Molecular Gas Properties in the Nucleus of Maffei 2
(Abridged) We present resolution maps of CO, its isotopologues, and HCN from
in the center of Maffei 2. The J=1-0 rotational lines of 12^CO, 13^CO, C18^O
and HCN, and the J=2-1 lines of 13^CO and C18^O were observed with the OVRO and
BIMA arrays. The 2-1/1-0 line ratios of the isotopologues constrain the bulk of
the molecular gas to originate in low excitation, subthermal gas. From LVG
modeling, we infer that the central GMCs have n(H_2) ~10^2.75 cm^-3 and T_k ~
30 K. Continuum emission at 3.4 mm, 2.7 mm and 1.4 mm was mapped to determine
the distribution and amount of HII regions and dust. Column densities derived
from C18^O and 1.4 mm dust continuum fluxes indicate the CO conversion factor
in the center of Maffei 2 is lower than Galactic by factors of ~2-4. Gas
morphology and the clear ``parallelogram'' in the Position-Velocity diagram
shows that molecular gas orbits within the potential of a nuclear (~220 pc)
bar. The nuclear bar is distinct from the bar that governs the large scale
morphology of Maffei 2. Giant molecular clouds in the nucleus are nonspherical
and have large linewidths. Dense gas and star formation are concentrated at the
sites of the x_1-x_2 orbit intersections of the nuclear bar, suggesting that
the starburst is dynamically triggered.Comment: 50 pages, 14 figures, accepted for publication in Ap
Modeling molecular crystals formed by spin-active metal complexes by atom-atom potentials
We apply the atom-atom potentials to molecular crystals of iron (II)
complexes with bulky organic ligands. The crystals under study are formed by
low-spin or high-spin molecules of Fe(phen)(NCS) (phen =
1,10-phenanthroline), Fe(btz)(NCS) (btz = 5,5,6,6-tetrahydro-4\textit{H},4\textit{H}-2,2-bi-1,3-thiazine), and Fe(bpz)(bipy) (bpz =
dihydrobis(1-pyrazolil)borate, and bipy = 2,2-bipyridine). All
molecular geometries are taken from the X-ray experimental data and assumed to
be frozen. The unit cell dimensions and angles, positions of the centers of
masses of molecules, and the orientations of molecules corresponding to the
minimum energy at 1 atm and 1 GPa are calculated. The optimized crystal
structures are in a good agreement with the experimental data. Sources of the
residual discrepancies between the calculated and experimental structures are
discussed. The intermolecular contributions to the enthalpy of the spin
transitions are found to be comparable with its total experimental values. It
demonstrates that the method of atom-atom potentials is very useful for
modeling organometalic crystals undergoing the spin transitions
Microstructure and kinematics of H2O masers in the massive star forming region IRAS 06061+2151
We have made multi-epoch VLBI observations of H2O maser emission in the
massive star forming region IRAS 06061+2151 with the Japanese VLBI network
(JVN) from 2005 May to 2007 October. The detected maser features are
distributed within an 1\arcsec1\arcsec (2000 au2000 au at the
source position) around the ultra-compact H {\small\bf II} region seen in radio
continuum emission. Their bipolar morphology and expanding motion traced
through their relative proper motions indicate that they are excited by an
energetic bipolar outflow. Our three-dimensional model fitting has shown that
the maser kinematical structure in IRAS 06061+2151 is able to be explained by a
biconical outflow with a large opening angle ( 50\degr). The position angle
of the flow major axis coincides very well with that of the large scale jet
seen in 2.1\:\mu\rmn{m} hydrogen emission. This maser geometry indicates the
existence of dual structures composed of a collimated jet and a less collimated
massive molecular flow. We have also detected a large velocity gradient in the
southern maser group. This can be explained by a very small (on a scale of
several tens of au) and clumpy (the density contrast by an order of magnitude
or more) structure of the parental cloud. Such a structure may be formed by
strong instability of shock front or splitting of high density core.Comment: 14 pages, 6 figures accepted for publication in MNRA
- …