1,891 research outputs found

    Radical re-appraisal of water structure in hydrophilic confinement

    Get PDF
    The structure of water confined in MCM41 silica cylindrical pores is studied to determine if confined water really is simply a version of the bulk liquid which can be substantially supercooled without crystallisation. A combination of total neutron scattering from the porous silica, both wet and dry,and computer simulation using a realistic model of the scattering substrate isused. The water in the pore is divided into three regions: core, interfacial and overlap. The average local densities of water in these simulations are found to be about 20% lower than bulk water density, while the density in the core region is below, but closer to, the bulk density. There is a decrease in both local and core densities when the temperature is lowered from 298K to 210K. The radical proposal is made here that water in hydrophilic confinement is under significant tension, around -100MPa, inside the pore

    Comment on "Oxygen as a Site Specific Probe of the Structure of Water and Oxide Materials", PRL 107, 144501 (2011)

    Full text link
    A recent paper by Zeidler et al. (PRL 107, 144501 (2011)) describes a neutron scattering experiment on water in which oxygen isotope substitution is successfully achieved for the first time. Differences between scattering patterns with different oxygen isotopes give a combination of the O-O and O-H (or O-D) structure factors, and the method elegantly minimizes some of the problematic inelasticity effects associated with neutron scattering from hydrogen. Particular conclusions of the new work are that the OH bond length in the light water molecule is about 0.005A longer than the same bond in heavy water, and that the hydrogen bond peaks in both liquids are at about the same position. Notwithstanding the substantial progress demonstrated by the new work, the comparison with our own results (PRL, 101, 065502 (2008)) by Zeidler et al. is in our opinion misleading.Comment: 2 pages, 1 figure

    If nonhuman animals can suicide, why don’t they?

    Get PDF
    An evolutionary analysis suggests that selection is unlikely to have tolerated the capacity for intentional self-killing in nonhuman animals. The potential to escape pain by suicide would have presented a recurrent and severe adaptive problem for an animal with a reproductive future to protect. If the potential for suicide arose in the evolutionary past, anti-suicide mechanisms may have co-evolved, as we believe they have in adult humans. Peña-Guzmán’s (2017) argument that some nonhuman animals can suicide is incomplete without an account of the defences that result in the vast majority opting not to

    Microscopic Structure of Liquid Nitric Oxide

    Get PDF
    The microscopic structure of nitric oxide is investigated using neutron scattering experiments. The measurements are performed at various temperatures between 120 and 144 K and at pressures between 1.1 and 9 bar. Using the technique of empirical potential structure refinement (EPSR), our results show that the dimer is the main form, around 80%, of nitric oxide in the liquid phase at 120 K, but the degree of dissociation to monomers increases with increasing temperature. The reported degree of dissociation of dimers, and its trend with increasing temperature, is consistent with earlier measurements and studies. It is also shown that nonplanar dimers are not inconsistent with the diffraction data and that the possibility of nitric oxide molecules forming longer oligomers, consisting of bonded nitrogen atoms along the backbone, cannot be ruled out in the liquid. A molecular dynamics simulation is used to compare the present EPSR simulations with an earlier proposed intermolecular potential for the liquid

    A study of Ar-N₂ supercritical mixtures using neutron scattering, molecular dynamics simulations and quantum mechanical scattering calculations

    Get PDF
    The microscopic structure of Ar-N₂ supercritical mixtures was obtained using neutron scattering experiments at temperatures between 128.4 - 154.1 K, pressures between 48.7 - 97.8 bar and various mole fractions. Molecular Dynamics simulations (MD) were used to study the thermodynamics, microscopic structure and single molecule dynamics at the same conditions. The agreement between experimental and theoretical results on the intermolecular structure was very good. Furthermore, a new explicitly-correlated coupled cluster potential energy surface was obtained for the Ar-N₂ van der Waals complex. The ab initio potential energy surface (PES) was found in agreement with the MD interaction potential. The global minimum of the ab initio PES Dₑ = 98.66 cm⁻¹ was located at the T-shaped geometry and at the intermolecular equilibrium distance of Rₑ = 7.00a₀. The dissociation energy of the complex was determined to be D₀ = 76.86 cm⁻¹. Quantum mechanical (QM) calculations on the newly obtained PES were used to provide the bound levels of the complex. Finally, integral and differential QM cross sections in Ar + N₂ collisions were calculated at collision energy corresponding to the average temperature of the experiments and at room temperature

    Development of an Automated Digestion and Droplet Deposition Microfluidic Chip for MALDI-TOF MS

    Get PDF
    An automated proteolytic digestion bioreactor and droplet deposition system was constructed with a plastic microfluidic device for off-line interfacing to matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The microfluidic chips were fabricated in poly(methyl methacrylate) (PMMA), using a micromilling machine and incorporated a bioreactor, which was 100 μm wide, 100 μm deep, and possessed a 4 cm effective channel length (400 nL volume). The chip was operated by pressure-driven flow and mounted on a robotic fraction collector system. The PMMA bioreactor contained surface immobilized trypsin, which was covalently attached to the UV-modified PMMA surface using coupling reagents N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) and hydroxysulfosuccinimide (sulfo-NHS). The digested peptides were mixed with a MALDI matrix on-chip and deposited as discrete spots on MALDI targets. The bioreactor provided efficient digestion of a test protein, cytochrome c, at a flow rate of 1 μL/min, producing a reaction time of ∼24 s to give adequate sequence coverage for protein identification. Other proteins were also evaluated using this solid-phase bioreactor. The efficiency of digestion was evaluated by monitoring the sequence coverage, which was 64%, 35%, 58%, and 47% for cytochrome c, bovine serum albumin (BSA), myoglobin, and phosphorylase b, respectively. © 2008 American Society for Mass Spectrometry

    Low-Density Water Structure Observed in a Nanosegregated Cryoprotectant Solution at Low Temperatures from 285 to 238 K

    Get PDF
    The structure of liquid water is defined by its molecular association through hydrogen bonding. Two different structures have been proposed for liquid water at low temperatures: low-density liquid (LDL) and high-density liquid (HDL) water. Here, we demonstrate a platform that can be exploited to experimentally probe the structure of liquid water in equilibrium at temperatures down to 238 K. We make use of a cryoprotectant molecule, glycerol, that, when mixed with water, lowers the freezing temperature of the solution nonmonotonically with glycerol concentration. We use a combination of neutron diffraction measurements and computational modeling to examine the structure of water in glycerol–water liquid mixtures at low temperatures from 285 to 238 K. We confirm that the mixtures are nanosegregated into regions of glycerol-rich and water-rich clusters. We examine the water structure and reveal that, at the temperatures studied here, water forms a low-density water structure that is more tetrahedral than the structure at room temperature. We postulate that nanosegregation allows water to form a low-density structure that is protected by an extensive and encapsulating glycerol interface

    A Tree-Loop Duality Relation at Two Loops and Beyond

    Get PDF
    The duality relation between one-loop integrals and phase-space integrals, developed in a previous work, is extended to higher-order loops. The duality relation is realized by a modification of the customary +i0 prescription of the Feynman propagators, which compensates for the absence of the multiple-cut contributions that appear in the Feynman tree theorem. We rederive the duality theorem at one-loop order in a form that is more suitable for its iterative extension to higher-loop orders. We explicitly show its application to two- and three-loop scalar master integrals, and we discuss the structure of the occurring cuts and the ensuing results in detail.Comment: 20 pages. Few typos corrected, some additional comments included, Appendix B and one reference added. Final version as published in JHE

    The Intramolecular Loss of Fluorescence by Lysine Derivatized with Naphthalenedialdehyde

    Get PDF
    This is the publisher's version, also available electronically from http://www.opticsinfobase.org/as/abstract.cfm?URI=as-44-5-858.Derivatization of primary amines such as amino acids and peptides with naphthalenedialdehyde (NDA) in the presence of cyanide ion yields cyanobenzo[f]-isoindole (CBI) adducts that are highly fluorescent. However, the fluorescence is seriously quenched with amines that possess more than one primary amine site, as is the case with lysine. Although it was found that the adsorption of CBI2-lysine on a solid substrate restored the fluorescence, the reason for the solution quenching, with respect to results for mono-derivatized amines, was investigated. The experiments to probe the quenching were based on the assumption that the mechanism responsible for quenching involved a charge-transfer (CT) excited state. Thus, it was found that the solvent properties of viscosity and polarity affected the lifetime and quantum yield of fluorescence in a manner consistent with the proposed mechanism
    corecore