594 research outputs found

    Universal flow diagram for the magnetoconductance in disordered GaAs layers

    Full text link
    The temperature driven flow lines of the diagonal and Hall magnetoconductance data (G_{xx},G_{xy}) are studied in heavily Si-doped, disordered GaAs layers with different thicknesses. The flow lines are quantitatively well described by a recent universal scaling theory developed for the case of duality symmetry. The separatrix G_{xy}=1 (in units e^2/h) separates an insulating state from a spin-degenerate quantum Hall effect (QHE) state. The merging into the insulator or the QHE state at low temperatures happens along a semicircle separatrix G_{xx}^2+(G_{xy}-1)^2=1 which is divided by an unstable fixed point at (G_{xx},G_{xy})=(1,1).Comment: 10 pages, 5 figures, submitted to Phys. Rev. Let

    f(R)f(R) gravity constrained by PPN parameters and stochastic background of gravitational waves

    Full text link
    We analyze seven different viable f(R)f(R)-gravities towards the Solar System tests and stochastic gravitational waves background. The aim is to achieve experimental bounds for the theory at local and cosmological scales in order to select models capable of addressing the accelerating cosmological expansion without cosmological constant but evading the weak field constraints. Beside large scale structure and galactic dynamics, these bounds can be considered complimentary in order to select self-consistent theories of gravity working at the infrared limit. It is demonstrated that seven viable f(R)f(R)-gravities under consideration not only satisfy the local tests, but additionally, pass the above PPN-and stochastic gravitational waves bounds for large classes of parameters.Comment: 23 pages, 8 figure

    Charged-Particle Multiplicities in Charged-Current Neutrino-- and Anti-Neutrino--Nucleus Interactions

    Get PDF
    The CHORUS experiment, designed to search for νμντ\nu_{\mu}\to\nu_{\tau} oscillations, consists of a nuclear emulsion target and electronic detectors. In this paper, results on the production of charged particles in a small sample of charged-current neutrino-- and anti-neutrino--nucleus interactions at high energy are presented. For each event, the emission angle and the ionization features of the charged particles produced in the interaction are recorded, while the standard kinematic variables are reconstructed using the electronic detectors. The average multiplicities for charged tracks, the pseudo-rapidity distributions, the dispersion in the multiplicity of charged particles and the KNO scaling are studied in different kinematical regions. A study of quasi-elastic topologies performed for the first time in nuclear emulsions is also reported. The results are presented in a form suitable for use in the validation of Monte Carlo generators of neutrino--nucleus interactions.Comment: 17 pages, 5 figure

    Measurements of the Mass and Full-Width of the ηc\eta_c Meson

    Get PDF
    In a sample of 58 million J/ψJ/\psi events collected with the BES II detector, the process J/ψγηc\psi\to\gamma\eta_c is observed in five different decay channels: γK+Kπ+π\gamma K^+K^-\pi^+\pi^-, γπ+ππ+π\gamma\pi^+\pi^-\pi^+\pi^-, γK±KS0π\gamma K^\pm K^0_S \pi^\mp (with KS0π+πK^0_S\to\pi^+\pi^-), γϕϕ\gamma \phi\phi (with ϕK+K\phi\to K^+K^-) and γppˉ\gamma p\bar{p}. From a combined fit of all five channels, we determine the mass and full-width of ηc\eta_c to be mηc=2977.5±1.0(stat.)±1.2(syst.)m_{\eta_c}=2977.5\pm1.0 ({stat.})\pm1.2 ({syst.}) MeV/c2c^2 and Γηc=17.0±3.7(stat.)±7.4(syst.)\Gamma_{\eta_c} = 17.0\pm3.7 ({stat.})\pm7.4 ({syst.}) MeV/c2c^2.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events

    Get PDF
    We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging

    Get PDF
    We present a measurement of the top quark pair (ttˉt\bar{t}) production cross section (σttˉ\sigma_{t\bar{t}}) in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV using 230 pb1^{-1} of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the ttˉt\bar{t} purity of the selected sample. For a top quark mass of 175 GeV, we measure σttˉ=8.61.5+1.6(stat.+syst.)±0.6(lumi.)\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.) pb, in agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let

    Precursor engineering of hydrotalcite-derived redox sorbents for reversible and stable thermochemical oxygen storage

    Get PDF
    Chemical looping processes based on multiple-step reduction and oxidation of metal oxides hold great promise for a variety of energy applications, such as CO2 capture and conversion, gas separation, energy storage, and redox catalytic processes. Copper-based mixed oxides are one of the most promising candidate materials with a high oxygen storage capacity. However, the structural deterioration and sintering at high temperatures is one key scientific challenge. Herein, we report a precursor engineering approach to prepare durable copper-based redox sorbents for use in thermochemical looping processes for combustion and gas purification. Calcination of the CuMgAl hydrotalcite precursors formed mixed metal oxides consisting of CuO nanoparticles dispersed in the Mg-Al oxide support which inhibited the formation of copper aluminates during redox cycling. The copper-based redox sorbents demonstrated enhanced reaction rates, stable O2 storage capacity over 500 redox cycles at 900 °C, and efficient gas purification over a broad temperature range. We expect that our materials design strategy has broad implications on synthesis and engineering of mixed metal oxides for a range of thermochemical processes and redox catalytic applications
    corecore