5,357 research outputs found

    Geometric Characteristics of Lithium Ion Battery Electrodes with Different Packing Densities

    Get PDF
    poster abstractThe microstructure of electrodes plays a critical role in determining the performance of lithium ion batteries (LIBs), because the microstructure can affect the transport and electrochemical processes within electrodes (1-3). Increasing the volume fraction of active materials in the electrode will increase the energy density. However, the electrodes’ structural properties could also be changed significantly and the critical physical and electrochemical processes in LIBs will be affected. Therefore, the performance of a LIB can be optimized for a specific operating condition by designing electrode microstructures. For instance, Hellweg suggested a spatially varying porous electrode model to improve lithium ion transport in electrolyte phase at high charge/discharge rates (4). He showed that the power density of the graded porosity electrode was higher than a homogeneous porosity electrode without energy loss. In this study, we investigate the realistic geometric characteristics of electrode microstructures under different packing densities and the effect of packing density on the performance of LIBs. Moreover, a spatially varying porous electrode will be studied to increase the electrode energy density without losing rate capability. To investigate geometric characteristics of porous microstructures, cathode electrodes were fabricated from a 94:3:3 (weight %) mixture of LiCoO2 (average particle radius = 5 μm), PVDF, and super-P carbon black. To change the packing density, initial thickness of the electrodes was set in a range of 40 ~ 80 μm. Then all electrodes were pressed down to 40 μm by using a rolling press machine. A synchrotron X-ray nano-computed tomography instrument (nano-CT) at the Advanced Phothon Source of Argonne National Lab was employed to obtain morphological data of the electrodes, with a spatial resolution of 60 nm. The morphology data sets were quantitatively analyzed to characterize their geometric properties. Fig. 1 shows the porosity (ε), specific surface area (As, μm-1), tortuosity (τ), and pore size distribution of 4 different electrode microstructures. The pore size distribution of the un-pressed electrode (ε =0.56, black color) demonstrates nonuniformly dispersed active material. The highest packing density electrode (ε =0.36, red color) shows the highest tortuosity. The charge/discharge experiments were also conducted for these 4 different electrodes. The geometric properties and cell testing results will be analyzed and reported. Acknowledgments: This work was supported by US National Science Foundation under Grant No. 1335850. Fig. 1 Geometric characteristics (porosity ε, specific surface area As, tortuosity τ, pore size distribution) of xray generated porous electrode microstructure with different packing densities

    The Lyman-α\alpha Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter

    Full text link
    The hydrogen Lyman-α\alpha (H {\sc i} Lyα\alpha) emission during solar flares has rarely been studied in spatially resolved images and its physical origin has not been fully understood. In this paper, we present novel Lyα\alpha images for a C1.4 solar flare (SOL2021-08-20T22:00) from the Extreme Ultraviolet Imager aboard Solar Orbiter, together with multi-waveband and multi-perspective observations from the Solar Terrestrial Relations Observatory Ahead and the Solar Dynamics Observatory spacecraft. It is found that the Lyα\alpha emission has a good temporal correlation with the thermal emissions at 1--8 \AA\ and 5--7 keV, indicating that the flaring Lyα\alpha is mainly produced by a thermal process in this small event. However, nonthermal electrons play a minor role in generating Lyα\alpha at flare ribbons during the rise phase of the flare, as revealed by the hard X-ray imaging and spectral fitting. Besides originating from flare ribbons, the Lyα\alpha emission can come from flare loops, likely caused by plasma heating and also cooling that happen in different flare phases. It is also found that the Lyα\alpha emission shows fairly similar features with the He {\sc ii} 304 \AA\ emission in light curve and spatio-temporal variation along with small differences. These observational results improve our understanding of the Lyα\alpha emission in solar flares and also provide some insights for investigating the Lyα\alpha emission in stellar flares.Comment: 19 pages, 7 figures, and 2 tables. ApJ accepted. Comments are welcom

    Observations and Simulations of Formation of Broad Plasma Depletions Through Merging Process

    Get PDF
    Broad plasma depletions in the equatorial ionosphere near dawn are region in which the plasma density is reduced by 1-3 orders of magnitude over thousands of kilometers in longitude. This phenomenon is observed repeatedly by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during deep solar minimum. The plasma flow inside the depletion region can be strongly upward. The possible causal mechanism for the formation of broad plasma depletions is that the broad depletions result from merging of multiple equatorial plasma bubbles. The purpose of this study is to demonstrate the feasibility of the merging mechanism with new observations and simulations. We present C/NOFS observations for two cases. A series of plasma bubbles is first detected by C/NOFS over a longitudinal range of 3300-3800 km around midnight. Each of the individual bubbles has a typical width of approx 100 km in longitude, and the upward ion drift velocity inside the bubbles is 200-400 m/s. The plasma bubbles rotate with the Earth to the dawn sector and become broad plasma depletions. The observations clearly show the evolution from multiple plasma bubbles to broad depletions. Large upward plasma flow occurs inside the depletion region over 3800 km in longitude and exists for approx 5 h. We also present the numerical simulations of bubble merging with the physics-based low-latitude ionospheric model. It is found that two separate plasma bubbles join together and form a single, wider bubble. The simulations show that the merging process of plasma bubbles can indeed occur in incompressible ionospheric plasma. The simulation results support the merging mechanism for the formation of broad plasma depletions

    SU(4) Chiral Quark Model with Configuration Mixing

    Full text link
    Chiral quark model with configuration mixing and broken SU(3)\times U(1) symmetry has been extended to include the contribution from c\bar c fluctuations by considering broken SU(4) instead of SU(3). The implications of such a model have been studied for quark flavor and spin distribution functions corresponding to E866 and the NMC data. The predicted parameters regarding the charm spin distribution functions, for example, \Delta c, \frac{\Delta c}{{\Delta \Sigma}}, \frac{\Delta c}{c} as well as the charm quark distribution functions, for example, \bar c, \frac{2\bar c}{(\bar u+\bar d)}, \frac{2 \bar c}{(u+d)} and \frac{(c+ \bar c)}{\sum (q+\bar q)} are in agreement with other similar calculations. Specifically, we find \Delta c=-0.009, \frac{\Delta c}{{\Delta \Sigma}}=-0.02, \bar c=0.03 and \frac{(c+ \bar c)}{\sum (q+\bar q)}=0.02 for the \chiQM parameters a=0.1, \alpha=0.4, \beta=0.7, \zeta_{E866}=-1-2 \beta, \zeta_{NMC}=-2-2 \beta and \gamma=0.3, the latter appears due to the extension of SU(3) to SU(4).Comment: 10 RevTeX pages. Accepted for publication in Phys. Rev.

    Chiral Quark Model with Configuration Mixing

    Full text link
    The implications of one gluon exchange generated configuration mixing in the Chiral Quark Model (χ\chiQMgcm_{gcm}) with SU(3) and axial U(1) symmetry breakings are discussed in the context of proton flavor and spin structure as well as the hyperon β\beta-decay parameters. We find that χ\chiQMgcm_{gcm} with SU(3) symmetry breaking is able to give a satisfactory unified fit for spin and quark distribution functions, with the symmetry breaking parameters α=.4\alpha=.4, β=.7\beta=.7 and the mixing angle ϕ=20o\phi=20^o, both for NMC and the most recent E866 data. In particular, the agreement with data, in the case of GA/GV,Δ8G_A/G_V, \Delta_8, F, D, fsf_s and f3/f8f_3/f_8, is quite striking.Comment: 16 pages, LaTex, Table and Appendix adde

    Octet magnetic moments and the Coleman-Glashow sum rule violation in the chiral quark model

    Full text link
    Baryon octet magnetic moments when calculated within the chiral quark model, incorporating the orbital angular momentum as well as the quark sea contribution through the Cheng-Li mechanism, not only show improvement over the non relativistic quark model results but also gives a non zero value for the right hand side of Coleman-Glashow sum rule. When effects due to spin-spin forces between constituent quarks as well as `mass adjustments' due to confinement are added, it leads to an excellent fit for the case of p, \Sigma^+, \Xi^o and violation of Coleman-Glashow sum rule, whereas in almost all the other cases the results are within 5% of the data.Comment: 5 RevTeX pages, accepted for publication in PRD(Rapid Communication

    Molecular determinants of disease in coxsackievirus B1 murine infection

    Get PDF
    To understand better how different genomic regions may confer pathogenicity for the coxsackievirus B (CVB), two intratypic CVB1 variants and a number of recombinant viruses were studied. Sequencing analysis showed 23 nucleotide changes between the parental non-pathogenic CVB1N and the pathogenic CVB1Nm. Mutations present in CVB1Nm were more conserved than those in CVB1N when compared to other CVB sequences. Inoculation in C3H/HeJ mice showed that the P1 region is critical for pathogenicity in murine pancreas and heart. The molecular determinants of disease for these organs partially overlap. Several P1 region amino acid differences appear to be located in the decay accelerating factor (DAF) footprint CVBs. CVB1N and CVB1Nm interacted with human CAR, but only CVB1N seemed to interact with human DAF, as determined using soluble receptors in a plaque reduction assay. However, the murine homologue Daf-1 did not interact with any virus assessed by haemagglutination. The results of this study suggest that an unknown receptor interaction with the virus play an important role in the pathogenicity of CVB1Nm. Further in vivo studies may clarify this issue.Instituto de Biotecnología y Biología Molecula

    Complex in vitro 3D models of digestive system tumors to advance precision medicine and drug testing: Progress, challenges, and trends

    Get PDF
    Digestive system cancers account for nearly half of all cancers around the world and have a high mortality rate. Cell culture and animal models represent cornerstones of digestive cancer research. However, their ability to en- able cancer precision medicine is limited. Cell culture models cannot retain the genetic and phenotypic heteroge- neity of tumors and lack tumor microenvironment (TME). Patient-derived xenograft mouse models are not suitable for immune-oncology research. While humanized mouse models are time- and cost-consuming. Suitable preclinical models, which can facilitate the understanding of mechanisms of tumor progression and develop new therapeutic strategies, are in high demand. This review article summarizes the recent progress on the establish- ment of TME by using tumor organoid models and microfluidic systems. The main challenges regarding the translation of organoid models from bench to bedside are discussed. The integration of organoids and a microflu- idic platform is the emerging trend in drug screening and precision medicine. A future prospective on this field is also provided.This study was supported by the National Natural Science Foundation of China (Grant No.82073148), the Guangdong Provincial Key Laboratory of Digestive Cancer Research (No. 2021B1212040006), the Sanming Project of Medicine in Shenzhen (SZSM201911010), the Shenzhen Key Medical Discipline Construction Fund (SZXK016), the Shenzhen Sustainable Project (KCXFZ202002011010593), and the Shenzhen-Hong Kong-Macau Technology Research Programme (Type C) (Grant No. SGDX2020110309260100)

    Acidification increases abundances of Vibrionales and Planctomycetia associated to a seaweed-grazer system: potential consequences for disease and prey digestion efficiency

    Get PDF
    Ocean acidification significantly affects marine organisms in several ways, with complex interactions. Seaweeds might benefit from rising CO2 through increased photosynthesis and carbon acquisition, with subsequent higher growth rates. However, changes in seaweed chemistry due to increased CO2 may change the nutritional quality of tissue for grazers. In addition, organisms live in close association with a diverse microbiota, which can also be influenced by environmental changes, with feedback effects. As gut microbiomes are often linked to diet, changes in seaweed characteristics and associated microbiome can affect the gut microbiome of the grazer, with possible fitness consequences. In this study, we experimentally investigated the effects of acidification on the microbiome of the invasive brown seaweed Sargassum muticum and a native isopod consumer Synisoma nadejda. Both were exposed to ambient CO2 conditions (380 ppm, pH 8.16) and an acidification treatment (1,000 ppm, pH 7.86) for three weeks. Microbiome diversity and composition were determined using high-throughput sequencing of the variable regions V5-7 of 16S rRNA. We anticipated that as a result of acidification, the seaweed-associated bacterial community would change, leading to further changes in the gut microbiome of grazers. However, no significant effects of elevated CO2 on the overall bacterial community structure and composition were revealed in the seaweed. In contrast, significant changes were observed in the bacterial community of the grazer gut. Although the bacterial community of S. muticum as whole did not change, Oceanospirillales and Vibrionales (mainly Pseudoalteromonas) significantly increased their abundance in acidified conditions. The former, which uses organic matter compounds as its main source, may have opportunistically taken advantage of the possible increase of the C/N ratio in the seaweed under acidified conditions. Pseudoalteromonas, commonly associated to diseased seaweeds, suggesting that acidification may facilitate opportunistic/pathogenic bacteria. In the gut of S. nadejda, the bacterial genus Planctomycetia increased abundance under elevated CO2. This shift might be associated to changes in food (S. muticum) quality under acidification. Planctomycetia are slow-acting decomposers of algal polymers that could be providing the isopod with an elevated algal digestion and availability of inorganic compounds to compensate the shifted C/N ratio under acidification in their food. In conclusion, our results indicate that even after only three weeks of acidified conditions, bacterial communities associated to ungrazed seaweed and to an isopod grazer show specific, differential shifts in associated bacterial community. These have potential consequences for seaweed health (as shown in corals) and isopod food digestion. The observed changes in the gut microbiome of the grazer seem to reflect changes in the seaweed chemistry rather than its microbial composition.Erasmus Mundus Doctoral Programme MARES on Marine Ecosystem Health Conservation [MARES_13_08]; FCT (Foundation for Science and Technology, Portugal) [SFRH/BPD/63703/2009, SFRH/BPD/107878/2015, SFRH/BPD/116774/2016]; EU SEAS-ERA project INVASIVES [SEAS-ERA/0001/2012]; [CCMAR/Multi/04326/2013
    corecore