780 research outputs found

    A Systematic Examination of Particle Motion in a Collapsing Magnetic Trap Model for Solar Flares

    Full text link
    Context. It has been suggested that collapsing magnetic traps may contribute to accelerating particles to high energies during solar flares. Aims. We present a detailed investigation of the energization processes of particles in collapsing magnetic traps, using a specific model. We also compare for the first time the energization processes in a symmetric and an asymmetric trap model. Methods. Particle orbits are calculated using guiding centre theory. We systematically investigate the dependence of the energization process on initial position, initial energy and initial pitch angle. Results. We find that in our symmetric trap model particles can gain up to about 50 times their initial energy, but that for most initial conditions the energy gain is more moderate. Particles with an initial position in the weak field region of the collapsing trap and with pitch angles around 90 degrees achieve the highest energy gain, with betatron acceleration of the perpendicular energy the dominant energization mechanism. For particles with smaller initial pitch angle, but still outside the loss cone, we find the possibility of a significant increase in parallel energy. This increase in parallel energy can be attributed to the curvature term in the parallel equation of motion and the associated energy gain happens in the center of the trap where the field line curvature has its maximum. We find qualitatively similar results for the asymmetric trap model, but with smaller energy gains and a larger number of particles escaping from the trap.Comment: 11 pages, 13 figures. To be published in Astronomy and Astrophysic

    On the Triggering of M-Class Solar Flare due to Loop-loop Interaction in AR NOAA 10875

    Full text link
    We present multiwavelength analysis of an M7.9 /1N solar flare which occurred on 27 April 2006 in AR NOAA 10875. The flare was triggered due to the interaction of two loop systems. GOES soft X-ray and TRACE 195 {\AA} image sequences show the observational evidences of 3-D X-type loop-loop interaction with converging motion at the interaction site. We found the following characteristics during the loop- loop interaction: (i) a short duration/impulsive flare obeying the Neupart effect, (ii) double peak structure in radio flux profiles (in 4.9 and 8.8 GHz), (iii) quasi-periodic oscillations in the radio flux profiles for the duration of \sim3 min, (iv) absence of CME and type III radio burst. The above characteristics observed during the flare are in agreement with the theory and simulation of current loop coalescence by Sakai et al. (1986). These are unique multiwavelength observations, which provide the evidences of loop-loop interaction and associated triggering of solar flare without CME.Comment: 7 pages, 4 figures, to be appear in the Proc. of the 1st Asian-Pacific Solar Phys. Meetin

    Effect of binary collisions on electron acceleration in magnetic reconnection

    Get PDF
    Context. The presence of energetic X-ray sources in the solar corona indicates there are additional transport effects in the acceleration region. A prime method of investigation is to add collisions into models of particle behaviour at the reconnection region.<p></p> Aims. We investigate electron test particle acceleration in a simple model of an X-type reconnection region. In particular, we explore the possibility that collisions will cause electrons to re-enter the acceleration more frequently, in turn causing particles to be accelerated to high energies.<p></p> Methods. The deterministic (Lorentz) description of particle gyration and acceleration has been coupled to a model for the effects of collisions. The resulting equations are solved numerically using Honeycutt’s extension of the RK4 method to stochastic differential equations. This approach ensures a correct description of collisional energy loss and pitch-angle scattering combined with a sufficiently precise description of gyro-motion and acceleration.<p></p> Results. Even with initially mono-energetic electrons, the competition between collisions and acceleration results in a distribution of electron energies. When realistic model parameters are used, electrons achieve X-ray energies. A possible model for coronal hard X-ray sources is indicated. Conclusions. Even in competition with energy losses, pitch-angle scattering results in a small proportion of electrons reaching higher energies than they would in a collisionless situation.<p></p&gt

    Locating current sheets in the solar corona

    Get PDF
    Current sheets are essential for energy dissipation in the solar corona, in particular by enabling magnetic reconnection. Unfortunately, sufficiently thin current sheets cannot be resolved observationally and the theory of their formation is an unresolved issue as well. We consider two predictors of coronal current concentrations, both based on geometrical or even topological properties of a force free coronal magnetic field. First, there are separatrices related to magnetic nulls. Through separatrices the magnetic connectivity changes discontinuously. Coronal magnetic nulls are, however, very rare. At second, inspired by the concept of generalized magnetic reconnection without nulls, quasi-separatrix layers (QSL) were suggested. Through QSL the magnetic connectivity changes continuously, though strongly. The strength of the connectivity change can be quantified by measuring the squashing of the flux tubes which connect the magnetically conjugated photospheres. We verify the QSL and separatrix concepts by comparing the sites of magnetic nulls and enhanced squashing with the location of current concentrations in the corona. Due to the known difficulties of their direct observation we simulated the coronal current sheets by numerically calculating the response of the corona to energy input from the photosphere heating a simultaneously observed EUV Bright Point. We did not find coronal current sheets not at the separatrices but at several QSL locations. The reason is that although the geometrical properties of force free extrapolated magnetic fields can indeed, hint at possible current concentrations, a necessary condition for current sheet formation is the local energy input into the corona

    Small scale energy release driven by supergranular flows on the quiet Sun

    Get PDF
    In this article we present data and modelling for the quiet Sun that strongly suggest a ubiquitous small-scale atmospheric heating mechanism that is driven solely by converging supergranular flows. A possible energy source for such events is the power transfer to the plasma via the work done on the magnetic field by photospheric convective flows, which exert drag of the footpoints of magnetic structures. In this paper we present evidence of small scale energy release events driven directly by the hydrodynamic forces that act on the magnetic elements in the photosphere, as a result of supergranular scale flows. We show strong spatial and temporal correlation between quiet Sun soft X-ray emission (from <i>Yohkoh</i> and <i>SOHO</i> MDI-derived flux removal events driven by deduced photospheric flows. We also present a simple model of heating generated by flux submergence, based on particle acceleration by converging magnetic mirrors. In the near future, high resolution soft X-ray images from XRT on the <i>Hinode</i> satellite will allow definitive, quantitative verification of our results

    Turbulent cross-field transport of non-thermal electrons in coronal loops: theory and observations

    Get PDF
    <p><b>Context:</b> A fundamental problem in astrophysics is the interaction between magnetic turbulence and charged particles. It is now possible to use Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of hard X-rays (HXR) emitted by electrons to identify the presence of turbulence and to estimate the magnitude of the magnetic field line diffusion coefficient at least in dense coronal flaring loops.</p> <p><b>Aims:</b> We discuss the various possible regimes of cross-field transport of non-thermal electrons resulting from broadband magnetic turbulence in coronal loops. The importance of the Kubo number K as a governing parameter is emphasized and results applicable in both the large and small Kubo number limits are collected.</p> <p><b>Methods:</b> Generic models, based on concepts and insights developed in the statistical theory of transport, are applied to the coronal loops and to the interpretation of hard X-ray imaging data in solar flares. The role of trapping effects, which become important in the non-linear regime of transport, is taken into account in the interpretation of the data.</p> <p><b>Results:</b> For this flaring solar loop, we constrain the ranges of parallel and perpendicular correlation lengths of turbulent magnetic fields and possible Kubo numbers. We show that a substantial amount of magnetic fluctuations with energy ~1% (or more) of the background field can be inferred from the measurements of the magnetic diffusion coefficient inside thick-target coronal loops.</p&gt

    Abundance of Delta Resonances in 58Ni+58Ni Collisions between 1 and 2 AGeV

    Full text link
    Charged pion spectra measured in 58Ni-58Ni collisions at 1.06, 1.45 and 1.93 AGeV are interpreted in terms of a thermal model including the decay of Delta resonances. The transverse momentum spectra of pions are well reproduced by adding the pions originating from the Delta-resonance decay to the component of thermal pions, deduced from the high transverse momentum part of the pion spectra. About 10 and 18% of the nucleons are excited to Delta states at freeze-out for beam energies of 1 and 2 AGeV, respectively.Comment: 14 pages, LaTeX with 3 included figures; submitted to Physics Letters
    corecore