264 research outputs found

    Heartside Gleaning Initiative Food Waste Survey

    Get PDF
    Residents of the Heartside neighborhood of Grand Rapids experience a significant amount of poverty and food insecurity. The Heartside Gleaning Initiative is a nonprofit organization that assists Heartside residents by redistributing donated, fresh produce to them. Through survey research, our purpose was to assist the Heartside Gleaning Initiative in finding out what happens to this food once it is distributed; specifically how much food is wasted. Participants included residents that receive food donations as well as nonprofit organizations that receive donations and prepare meals for community members. Through community collaborations, we were able to write a survey, perform the survey, and obtain a data summary. It appears that food waste following distribution is not very prevalent, as reported by participants. While our study has limitations, including small sample size, it has opened the door for more research in this area. Recommendations for the future include utilizing information from other class groups including recipe books and nutrition/cooking classes to ensure that food waste does not rise

    Referenzwertbestimmung endokrinologischer Parameter mittels indirekter Methode auf Basis laborinterner Messwerte und ihre Relevanz im klinischen Alltag

    Get PDF
    Es wurden Referenzgrenzen für Erwachsene für verschiedene endokrinologische Parameter (Calcium, Phosphat, TSH, fT3, fT4, 25-OH-Vitamin D, Parathormon, Renin, Aldosteron) berechnet. Dafür wurde eine indirekte Methode, der von Arzideh entwickelte Reference Limit Estimator (RLE), auf die Messwerte von Patienten aus dem Zentrallabor des Universitätsklinikums Schleswig-Holstein (UKSH) angewandt. Diese ermöglichte es, die Verteilung der nicht-pathologischen Werte von der Verteilung der pathologischen Werte abzugrenzen und aus den nicht-pathologischen Daten retrospektiv Referenzgrenzen für Erwachsene zu ermitteln. Eine weitere Aufteilung nach Geschlecht und Alter wurde vorgenommen. Es wurden Altersklassen zwischen 18 und 80 Jahren gebildet und in einigen Fällen erfolgte eine saisonale oder gerätebezogene Stratifizierung. Die berechneten Referenzgrenzen wurden einem Vergleich mit etablierten Referenzgrenzen unterzogen

    Decadal demographic shifts and size-dependent disturbance responses of corals in a subtropical warming hotspot

    Get PDF
    Funding supporting this research was provided by an Australian Research Council Discovery Early Career Research Award (DE230100141) and a University of Sydney Fellowship to BS, by the Australian Research Council Centre of Excellence for Coral Reef Studies (CE140100020) to JMP and others, the Australian Research Council Centre of Excellence for Environmental Decisions (CE110001014) and the Winifred Violet Scott Charitable Trust to MB, the Royal Geographical Society’s Ralph Brown Expedition Grant to MB and JC, the Natural Environment Research Council’s Sphere Doctoral Training Partnership to JC and the Natural Environment Research Council’s ONE Planet Doctoral Training Partnership (NE/S007512/1) and the European Commission’s Erasmus Traineeship to LL. This project has further received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement TRIM-DLV-747102 to MB.Long-term demographic studies at biogeographic transition zones can elucidate how body size mediates disturbance responses. Focusing on subtropical reefs in eastern Australia, we examine trends in the size-structure of corals with contrasting life-histories and zoogeographies surrounding the 2016 coral bleaching event (2010–2019) to determine their resilience and recovery capacity. We document demographic shifts, with disproportionate declines in the number of small corals and long-term persistence of larger corals. The incidence of bleaching (Pocillopora, Turbinaria) and partial mortality (Acropora, Pocillopora) increased with coral size, and bleached corals had greater risk of partial mortality. While endemic Pocillopora experienced marked declines, decadal stability of Turbinaria despite bleaching, coupled with abundance increase and bleaching resistance in Acropora indicate remarkable resilience of these taxa in the subtropics. Declines in the number of small corals and variable associations with environmental drivers indicate bottlenecks to recovery mediated by inhibitory effects of thermal extremes for Pocillopora (heat stress) and Acropora (heat and cold stress), and stimulatory effects of chlorophyll-a for Turbinaria. Although our study reveals signs of resilience, it foreshadows the vulnerability of subtropical corals to changing disturbance regimes that include marine heatwaves. Disparity in population dynamics suggest that subtropical reefs are ecologically distinct from tropical coral reefs.Peer reviewe

    Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone

    Get PDF
    Benthic nitrogen (N2) fixation and sulfate reduction (SR) were investigated in the Peruvian oxygen minimum zone (OMZ). Sediment samples, retrieved by a multiple corer were taken at six stations (70–1025 m) along a depth transect at 12° S, covering anoxic and hypoxic bottom water conditions. Benthic N2 fixation was detected at all sites, with high rates measured in OMZ mid-waters between the 70 and 253 m and lowest N2 fixation rates below 253 m down to 1025 m water depth. SR rates were decreasing with increasing water depth, with highest rates at the shallow site. Benthic N2 fixation depth profiles largely overlapped with SR depth profiles, suggesting that both processes are coupled. The potential of N2 fixation by SR bacteria was verified by the molecular analysis of nifH genes. Detected nifH sequences clustered with SR bacteria that have been demonstrated to fix N2 in other benthic environments. Depth-integrated rates of N2 fixation and SR showed no direct correlation along the 12° S transect, suggesting that the benthic diazotrophs in the Peruvian OMZ are being controlled by additional various environmental factors. The organic matter availability and the presence of sulfide appear to be major drivers for benthic diazotrophy. It was further found that N2 fixation was not inhibited by high ammonium concentrations. N2 fixation rates in OMZ sediments were similar to rates measured in other organic-rich sediments. Overall, this work improves our knowledge on N sources in marine sediments and contributes to a better understanding of N cycling in OMZ sediments

    Effects of high CO2 and warming on a Baltic Sea microzooplankton community

    Get PDF
    Global warming and ocean acidification are among the most important stressors for aquatic ecosystems in the future. To investigate their direct and indirect effects on a near-natural plankton community, a multiple-stressor approach is needed. Hence, we set up mesocosms in a full-factorial design to study the effects of both warming and high CO2 on a Baltic Sea autumn plankton community, concentrating on the impacts on microzooplankton (MZP). MZP abundance, biomass, and species composition were analysed over the course of the experiment. We observed that warming led to a reduced time-lag between the phytoplankton bloom and an MZP biomass maximum. MZP showed a significantly higher growth rate and an earlier biomass peak in the warm treatments while the biomass maximum was not affected. Increased pCO2 did not result in any significant effects on MZP biomass, growth rate, or species composition irrespective of the temperature, nor did we observe any significant interactions between CO2 and temperature. We attribute this to the high tolerance of this estuarine plankton community to fluctuations in pCO2, often resulting in CO2 concentrations higher than the predicted end-of-century concentration for open oceans. In contrast, warming can be expected to directly affect MZP and strengthen its coupling with phytoplankton by enhancing its grazing pressure

    Depletion of oxygen, nitrate and nitrite in the Peruvian oxygen minimum zone cause an imbalance of benthic nitrogen fluxes

    Get PDF
    Highlights • Sulphidic event on the shelf resulted in a temporal imbalance of the benthic N cycle. • Bacterial NOx storage is a major source of oxidative power during euxinia. • Peruvian shelf and upper slope sediments are strong recycling sites of fixed N. Abstract Oxygen minimum zones (OMZ) are key regions for fixed nitrogen loss in both the sediments and the water column. During this study, the benthic contribution to N cycling was investigated at ten sites along a depth transect (74–989 m) across the Peruvian OMZ at 12 °S. O2 levels were below detection limit down to ~ 500 m. Benthic fluxes of N2, NO3–, NO2–, NH4+, H2S and O2 were measured using benthic landers. Flux measurements on the shelf were made under extreme geochemical conditions consisting of a lack of O2, NO3– and NO2– in the bottom water and elevated seafloor sulphide release. These particular conditions were associated with a large imbalance in the benthic nitrogen cycle. The sediments on the shelf were densely covered by filamentous sulphur bacteria Thioploca, and were identified as major recycling sites for DIN releasing high amounts of NH4+up to 21.2 mmol m−2 d−1 that were far in excess of NH4+release by ammonification. This difference was attributed to dissimilatory nitrate (or nitrite) reduction to ammonium (DNRA) that was partly being sustained by NO3– stored within the sulphur oxidizing bacteria. Sediments within the core of the OMZ (ca. 200 to 400 m) also displayed an excess flux of N of 3.5 mmol m−2 d−1 mainly as N2. Benthic nitrogen and sulphur cycling in the Peruvian OMZ appears to be particularly susceptible to bottom water fluctuations in O2, NO3−and NO2−, and may accelerate the onset of pelagic euxinia when NO3−and NO2−become depleted

    Benthic Dinitrogen Fixation Traversing the Oxygen Minimum Zone Off Mauritania (NW Africa)

    Get PDF
    Despite its potential to provide new nitrogen (N) to the environment, knowledge on benthic dinitrogen (N2) fixation remains relatively sparse, and its contribution to the marine N budget is regarded as minor. Benthic N2 fixation is often observed in organic-rich sediments coupled to heterotrophic metabolisms, such as sulfate reduction. In the present study, benthic N2 fixation together with sulfate reduction and other heterotrophic metabolisms were investigated at six station between 47 and 1,108 m water depth along the 18°N transect traversing the highly productive upwelling region known as Mauritanian oxygen minimum zone (OMZ). Bottom water oxygen concentrations ranged between 30 and 138 μM. Benthic N2 fixation determined by the acetylene reduction assay was detected at all stations with highest rates (0.15 mmol m−2 d−1) on the shelf (47 and 90 m water depth) and lowest rates (0.08 mmol m−2 d−1) below 412 m water depth. The biogeochemical data suggest that part of the N2 fixation could be linked to sulfate- and iron-reducing bacteria. Molecular analysis of the key functional marker gene for N2 fixation, nifH, confirmed the presence of sulfate- and iron-reducing diazotrophs. High N2 fixation further coincided with bioirrigation activity caused by burrowing macrofauna, both of which showed high rates at the shelf sites and low rates in deeper waters. However, statistical analyses proved that none of these processes and environmental variables were significantly correlated with benthic diazotrophy, which lead to the conclusion that either the key parameter controlling benthic N2 fixation in Mauritanian sediments remains unidentified or that a more complex interaction of control mechanisms exists. N2 fixation rates in Mauritanian sediments were 2.7 times lower than those from the anoxic Peruvian OMZ
    • …
    corecore