11 research outputs found
Development of Novel Indole-Based Bifunctional Aldose Reductase Inhibitors/Antioxidants as Promising Drugs for the Treatment of Diabetic Complications
Aldose reductase (AR, ALR2), the first enzyme of the polyol pathway, is implicated in the pathophysiology of diabetic complications. Aldose reductase inhibitors (ARIs) thus present a promising therapeutic approach to treat a wide array of diabetic complications. Moreover, a therapeutic potential of ARIs in the treatment of chronic inflammation-related pathologies and several genetic metabolic disorders has been recently indicated. Substituted indoles are an interesting group of compounds with a plethora of biological activities. This article reviews a series of indole-based bifunctional aldose reductase inhibitors/antioxidants (ARIs/AOs) developed during recent years. Experimental results obtained in in vitro, ex vivo, and in vivo models of diabetic complications are presented. Structure–activity relationships with respect to carboxymethyl pharmacophore regioisomerization and core scaffold modification are discussed along with the criteria of ‘drug-likeness”. Novel promising structures of putative multifunctional ARIs/AOs are designed
[5-(Benzyloxy)-1H-indol-1-yl]acetic acid, an aldose reductase inhibitor and PPARγ ligand
Based on overlapping structural requirements for both efficient aldose reductase inhibitors and PPAR ligands, [5-(benzyloxy)-1H-indol-1-yl]acetic acid (compound 1) was assessed for inhibition of aldose reductase and ability to interfere with PPARγ. Aldose reductase inhibition by 1 was characterized by IC 50 in submicromolar and low micromolar range, for rat and human enzyme, respectively. Selectivity in relation to the closely related rat kidney aldehyde reductase was characterized by approx. factor 50. At organ level in isolated rat lenses, compound 1 significantly inhibited accumulation of sorbitol in a concentration-dependent manner. To identify crucial interactions within the enzyme binding site, molecular docking simulations were performed. Based on luciferase reporter assays, compound 1 was found to act as a ligand for PPARγ, yet with rather low activity. On balance, compound 1 is suggested as a promising lead-like scaffold for agents with the potential to interfere with multiple targets in diabetes
The Effects of Prolonged Treatment with Cemtirestat on Bone Parameters Reflecting Bone Quality in Non-Diabetic and Streptozotocin-Induced Diabetic Rats
Cemtirestat, a bifunctional drug acting as an aldose reductase inhibitor with antioxidant ability, is considered a promising candidate for the treatment of diabetic neuropathy. Our study firstly examined the effects of prolonged cemtirestat treatment on bone parameters reflecting bone quality in non-diabetic rats and rats with streptozotocin (STZ)-induced diabetes. Experimental animals were assigned to four groups: non-diabetic rats, non-diabetic rats treated with cemtirestat, diabetic rats, and diabetic rats treated with cemtirestat. Higher levels of plasma glucose, triglycerides, cholesterol, glycated hemoglobin, magnesium, reduced femoral weight and length, bone mineral density and content, parameters characterizing trabecular bone mass and microarchitecture, cortical microarchitecture and geometry, and bone mechanical properties were determined in STZ-induced diabetic versus non-diabetic rats. Treatment with cemtirestat did not affect all aforementioned parameters in non-diabetic animals, suggesting that this drug is safe. In diabetic rats, cemtirestat supplementation reduced plasma triglyceride levels, increased the Haversian canal area and slightly, but insignificantly, improved bone mineral content. Nevertheless, the insufficient effect of cemtirestat treatment on diabetic bone disease does not support its use in the therapy of this complication of type 1 diabetes mellitus
2-Chloro-1,4-naphthoquinone derivative of quercetin as an inhibitor of aldose reductase and anti-inflammatory agent
The ability of flavonoids to affect multiple key pathways of glucose toxicity, as well as to attenuate inflammation has been well documented. In this study, the inhibition of rat lens aldose reductase by 3,7-di-hydroxy-2-[4-(2-chloro-1,4-naphthoquinone-3-yloxy)-3-hydroxyphenyl]-5-hydroxy-chromen-4-one (compound 1), was studied in greater detail in comparison with the parent quercetin (compound 2). The inhibition activity of 1, characterized by IC50 in low micromolar range, surpassed that of 2. Selectivity in relation to the closely related rat kidney aldehyde reductase was evaluated. At organ level in isolated rat lenses incubated in the presence of high glucose, compound 1 significantly inhibited accumulation of sorbitol in a concentration-dependent manner, which indicated that 1 was readily taken up by the eye lens cells and interfered with cytosolic aldose reductase. In addition, compound 1 provided macroscopic protection of colonic mucosa in experimental colitis in rats. At pharmacologically active concentrations, compound 1 and one of its potential metabolite 2-chloro-3-hydroxy[1,4]-naphthoquinone (compound 3) did not affect osmotic fragility of red blood cells
[5-(Benzyloxy)-1H-indol-1-yl]acetic acid, an aldose reductase inhibitor and PPAR gamma ligand
Based on overlapping structural requirements for both efficient aldose reductase inhibitors and PPAR ligands, [5-(benzyloxy)-1H-indol-1-yl] acetic acid (compound 1) was assessed for inhibition of aldose reductase and ability to interfere with PPAR gamma. Aldose reductase inhibition by 1 was characterized by IC50 in submicromolar and low micromolar range, for rat and human enzyme, respectively. Selectivity in relation to the closely related rat kidney aldehyde reductase was characterized by approx. factor 50. At organ level in isolated rat lenses, compound 1 significantly inhibited accumulation of sorbitol in a concentration-dependent manner. To identify crucial interactions within the enzyme binding site, molecular docking simulations were performed. Based on luciferase reporter assays, compound 1 was found to act as a ligand for PPAR gamma, yet with rather low activity. On balance, compound 1 is suggested as a promising lead-like scaffold for agents with the potential to interfere with multiple targets in diabetes
Recommended from our members
Non-carboxylic acid inhibitors of aldose reductase based on N-substituted thiazolidinedione derivatives
In search of dually active PPAR-modulators/aldose reductase (ALR2) inhibitors, 16 benzylidene thiazolidinedione derivatives, previously reported as partial PPARγ agonists, together with additional 18 structural congeners, were studied for aldose reductase inhibitory activity. While no compounds had dual property, our efforts led to the identification of promising inhibitors of ALR2. Eight compounds (11, 15–16, 20–24, 30) from the library of 33 compounds were identified as potent and selective inhibitors of ALR2. Compound 21 was the most effective and selective inhibitor with an IC50 value of 0.95 ± 0.11 and 13.52 ± 0.81 μM against ALR2 and aldehyde reductase (ALR1) enzymes, respectively. Molecular docking and dynamics studies were performed to understand inhibitor-enzyme interactions at the molecular level that determine the potency and selectivity. Compound 21 was further subjected to in silico and in vitro studies to evaluate the pharmacokinetic profile. Being less acidic (pKa = 9.8), the compound might have a superior plasma membrane permeability and reach the cytosolic ALR2. This fact together with excellent drug-likeness criteria points to improved bioavailability compared to the clinically used compound Epalrestat. The designed compounds represent a novel group of non-carboxylate inhibitors of aldose reductase with an improved physicochemical profile.
[Display omitted]
•Thirty-three N-substituted benzylidene thiazolidines (1–33) tested against ALR2.•The active analog approach identified nine potent compounds.•Compound 21 was most potent with a selectivity index of 14.2•Compound 21, less acidic and hence exhibit better permeability than Epalrestat.•Halogen and polar amide link favours binding deeper into the active site of ALR2