9 research outputs found

    Zircon U-Pb-Hf evidence for subduction related crustal growth and reworking of Archaean crust within the Palaeoproterozoic Birimian terrane, West African Craton, SE Ghana

    Get PDF
    Zircon Lu-Hf isotopic data from granites of southern and northwestern Ghana have been used to investigate the contribution of reworked Archaean bedrock to the Birimian crust of Ghana, West African Craton. Zircon from seven localities in southern Ghana and one locality in western Ghana were analysed. Combined U-Pb and Lu-Hf isotope data suggest juvenile crustal addition between 2.3–2.1 Ga, with a short period of reworking of Archaean crust. Until now, evidence for reworking of Archaean basement during Birimian magmatism in Ghana has hinged on whole-rock Nd model-ages of the Winneba pluton, and sparse inherited zircon grains from mainly northwestern Ghana. Our data suggest that reworking of Archaean crust is greater than previously inferred, but was limited to between ∼2.14–2.13 Ga. This period of reworking of older crustal components was preceded and succeeded by juvenile crustal addition. Coupled isotopic data suggest an eastward, mainly retreating arc system with a shorter pulse of accretion between ∼2.18–2.13 Ga and a rapid return to slab retreat during the growth of the Birimian terrane. The accretionary phase initiated melting of sub-continental lithospheric mantle and the overlying Archaean crust, generating magma with sub-chondritic Hf signatures. Subsequent slab retreat led to trench-ward movement of the magmatic activity and the mixture of juvenile and Archaean crust was replaced by uncontaminated juvenile magma. The 2.23 Ga age of the West Accra granodiorite (PK105) demonstrates the emplacement of felsic rocks during the Eoeburnean and pre-dates the suggested plume related rocks, contradicting suggested plume initiated subduction

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Pan-African Paleostresses and Reactivation of the Eburnean Basement Complex in Southeast Ghana (West Africa)

    Get PDF
    This faulting tectonics analysis concerns the southernmost segment of the Dahomeyide Orogen and the West-African craton eastern margin in southeast Ghana. The analysis of strike-slip faults in the frontal units of the Dahomeyide Belt indicates that four distinct compressive events (NE-SW, ENE-WSW to E-W, ESE-WNW to SE-NW and SE-NW to SSE-NNW) originated the juxtaposition of the Pan-African Mobile Zone and the West-African craton. These paleostress systems define a clockwise rotation of the compressional axis during the structuring of the Dahomeyide Orogen (650–550 Ma). The SE-NW and SSE-NNW to N-S compressional axes in the cratonic domain and its cover (Volta Basin) suggest that the reactivation of the eastern edge of the West African craton is coeval with the last stages of the Pan-African tectogenesis in southeast Ghana. An extensional episode expressed as late normal faulting is also recorded in this study. This E-W to SE-NW extension, which is particular to the southernmost part of the Dahomeyide Belt, appears to be post-Pan-African. This extension probably contributed to the formation of a major Jurassic rifting zone that originated the Central Atlantic and the Benue Trough
    corecore