699 research outputs found

    Extraordinary Magnetoresistance in Hybrid Semiconductor-Metal Systems

    Full text link
    We show that extraordinary magnetoresistance (EMR) arises in systems consisting of two components; a semiconducting ring with a metallic inclusion embedded. The im- portant aspect of this discovery is that the system must have a quasi-two-dimensional character. Using the same materials and geometries for the samples as in experiments by Solin et al.[1;2], we show that such systems indeed exhibit a huge magnetoresistance. The magnetoresistance arises due to the switching of electrical current paths passing through the metallic inclusion. Diagrams illustrating the flow of the current density within the samples are utilised in discussion of the mechanism responsible for the magnetoresistance effect. Extensions are then suggested which may be applicable to the silver chalcogenides. Our theory offers an excellent description and explanation of experiments where a huge magnetoresistance has been discovered[2;3].Comment: 12 Pages, 5 Figure

    Linear magnetoresistance in commercial n-type silicon due to inhomogeneous doping

    Full text link
    Free electron theory tells us that resistivity is independent of magnetic field. In fact, most observations match the semiclassical prediction of a magnetoresistance that is quadratic at low fields before saturating. However, a non-saturating linear magnetoresistance has been observed in exotic semiconductors such as silver chalcogenides, lightly-doped InSb, N-doped InAs, MnAs-GaAs composites, PrFeAsO, and epitaxial graphene. Here we report the observation of a large linear magnetoresistance in the ohmic regime in commonplace commercial n-type silicon wafer. It is well-described by a classical model of spatially fluctuating donor densities, and may be amplified by altering the aspect ratio of the sample to enhance current-jetting: increasing the width tenfold increased the magnetoresistance at 8 T from 445 % to 4707 % at 35 K. This physical picture may well offer insights into the large magnetoresistances recently observed in n-type and p-type Si in the non-ohmic regime.Comment: submitted to Nature Material

    Mechanochemistry: New Tools to Navigate the Uncharted Territory of “Impossible” Reactions

    Get PDF
    Mechanochemical transformations have made chemists enter unknown territories, forcing a different chemistry perspective. While questioning or revisiting familiar concepts belonging to solution chemistry, mechanochemistry has broken new ground, especially in the panorama of organic synthesis. Not only does it foster new “thinking outside the box”, but it also has opened new reaction paths, allowing to overcome the weaknesses of traditional chemistry exactly where the use of well-established solution-based methodologies rules out progress. In this Review, the reader is introduced to an intriguing research subject not yet fully explored and waiting for improved understanding. Indeed, the study is mainly focused on organic transformations that, although impossible in solution, become possible under mechanochemical processing conditions, simultaneously entailing innovation and expanding the chemical space

    Multifunctional semiconductor micro-Hall devices for magnetic, electric, and photo-detection

    Get PDF
    We report the real-space voltage response of InSb/AlInSb micro-Hall devices to local photo-excitation, electric, and magnetic fields at room temperature using scanning probe microscopy. We show that the ultrafast generation of localised photocarriers results in conductance perturbations analogous to those produced by local electric fields. Experimental results are in good agreement with tight-binding transport calculations in the diffusive regime. The magnetic, photo, and charge sensitivity of a 2 μm wide probe are evaluated at a 10 μA bias current in the Johnson noise limit (valid at measurement frequencies > 10 kHz) to be, respectively, 500 nT/√Hz; 20 pW/√Hz (λ = 635 nm) comparable to commercial photoconductive detectors; and 0.05 e/√Hz comparable to that of single electron transistors. These results demonstrate the remarkably versatile sensing attributes of simple semiconductor micro-Hall devices that can be applied to a host of imaging and sensing applications

    Room temperature ballistic transport in InSb quantum well nanodevices

    Get PDF
    We report the room temperature observation of significant ballistic electron transport in shallow etched four-terminal mesoscopic devices fabricated on an InSb/AlInSb quantum well (QW) heterostructure with a crucial partitioned growth-buffer scheme. Ballistic electron transport is evidenced by a negative bend resistance signature which is quite clearly observed at 295 K and at current densities in excess of 106^{6} A/cm2^{2}. This demonstrates unequivocally that by using effective growth and processing strategies, room temperature ballistic effects can be exploited in InSb/AlInSb QWs at practical device dimensions

    Mining the UKIDSS GPS: star formation and embedded clusters

    Full text link
    Data mining techniques must be developed and applied to analyse the large public data bases containing hundreds to thousands of millions entries. The aim of this study is to develop methods for locating previously unknown stellar clusters from the UKIDSS Galactic Plane Survey catalogue data. The cluster candidates are computationally searched from pre-filtered catalogue data using a method that fits a mixture model of Gaussian densities and background noise using the Expectation Maximization algorithm. The catalogue data contains a significant number of false sources clustered around bright stars. A large fraction of these artefacts were automatically filtered out before or during the cluster search. The UKIDSS data reduction pipeline tends to classify marginally resolved stellar pairs and objects seen against variable surface brightness as extended objects (or "galaxies" in the archive parlance). 10% or 66 x 10^6 of the sources in the UKIDSS GPS catalogue brighter than 17 magnitudes in the K band are classified as "galaxies". Young embedded clusters create variable NIR surface brightness because the gas/dust clouds in which they were formed scatters the light from the cluster members. Such clusters appear therefore as clusters of "galaxies" in the catalogue and can be found using only a subset of the catalogue data. The detected "galaxy clusters" were finally screened visually to eliminate the remaining false detections due to data artefacts. Besides the embedded clusters the search also located locations of non clustered embedded star formation. The search covered an area of 1302 square degrees and 137 previously unknown cluster candidates and 30 previously unknown sites of star formation were found

    Subjective mental well-being among higher education students in Finland during the first wave of COVID-19

    Get PDF
    Aims: Increased mental health problems during the COVID-19 pandemic have become a major concern among young adults. Our aim was to understand which COVID-19-related questions predicted mental well-being during the outbreak. Methods: Two cross-sectional datasets were used. The primary dataset was collected in May 2020 (n = 1001), during the initial COVID-19 outbreak, and the secondary in April 2019 (n = 10866), before the pandemic. Mental well-being was assessed with the Short Warwick-Edinburgh Mental Well-Being Scale. Relationships between mental well-being and COVID-19-related questions were investigated with lasso regression. As an exploratory analysis, two-way ANOVAs were used to compare mental well-being before and during the outbreak. Results: Higher levels of mental well-being were associated with lower levels of academic stress and COVID-19-related worry, along with a higher satisfaction with the procedures and information provided by the higher education institutions and the government. COVID-19-related symptoms and infections did not have an impact on students' mental well-being during the outbreak. Small to moderate effect sizes across the time points were detected, indicating an overall decrease in mental well-being across age and gender during the outbreak. Conclusions: COVID-19 had an impact on higher education students' mental well-being. Higher education institutes may play a crucial role in protecting their students' well-being during uncertain times.Peer reviewe

    Cessation of anti-VLA-4 therapy in a focal rat model of multiple sclerosis causes an increase in neuroinflammation

    Get PDF
    BackgroundPositron emission tomography (PET) can be used for in vivo evaluation of the pathology associated with multiple sclerosis. We investigated the use of longitudinal PET imaging and the 18-kDa translocator protein (TSPO) binding radioligand [F-18]GE-180 to detect changes in a chronic multiple sclerosis-like focal delayed-type hypersensitivity experimental autoimmune encephalomyelitis (fDTH-EAE) rat model during and after anti-VLA-4 monoclonal antibody (mAb) treatment. Thirty days after lesion activation, fDTH-EAE rats were treated with the anti-VLA-4 mAb (n=4) or a control mAb (n=4; 5mg/kg, every third day, subcutaneously) for 31days. Animals were imaged with [F-18]GE-180 on days 30, 44, 65, 86 and 142. Another group of animals (n=4) was used for visualisation the microglia with Iba-1 at day 44 after a 2-week treatment period.ResultsAfter a 2-week treatment period on day 44, there was a declining trend (p=0.067) in [F-18]GE-180-binding in the anti-VLA-4 mAb-treated animals versus controls. However, cessation of treatment for 4days after a 31-day treatment period increased [F-18]GE-180 binding in animals treated with anti-VLA-4 mAb compared to the control group (p=0.0003). There was no difference between the groups in TSPO binding by day 142.ConclusionsThese results demonstrated that cessation of anti-VLA-4 mAb treatment for 4days caused a transient rebound increase in neuroinflammation. This highlights the usefulness of serial TSPO imaging in the fDTH-EAE model to better understand the rebound phenomenon

    Refined estimates of local recurrence risks by DCIS score adjusting for clinicopathological features: a combined analysis of ECOG-ACRIN E5194 and Ontario DCIS cohort studies

    Get PDF
    Purpose Better tools are needed to estimate local recurrence (LR) risk after breast-conserving surgery (BCS) for DCIS. The DCIS score (DS) was validated as a predictor of LR in E5194 and Ontario DCIS cohort (ODC) after BCS. We combined data from E5194 and ODC adjusting for clinicopathological factors to provide refined estimates of the 10-year risk of LR after treatment by BCS alone. Methods Data from E5194 and ODC were combined. Patients with positive margins or multifocality were excluded. Identical Cox regression models were fit for each study. Patient-specific meta-analysis was used to calculate precision-weighted estimates of 10-year LR risk by DS, age, tumor size and year of diagnosis. Results The combined cohort includes 773 patients. The DS and age at diagnosis, tumor size and year of diagnosis provided independent prognostic information on the 10-year LR risk (p ≤ 0.009). Hazard ratios from E5194 and ODC cohorts were similar for the DS (2.48, 1.95 per 50 units), tumor size ≤ 1 versus > 1–2.5 cm (1.45, 1.47), age ≥ 50 versus 15%) 10-year LR risk after BCS alone compared to utilization of DS alone or clinicopathological factors alone. Conclusions The combined analysis provides refined estimates of 10-year LR risk after BCS for DCIS. Adding information on tumor size and age at diagnosis to the DS adjusting for year of diagnosis provides improved LR risk estimates to guide treatment decision making
    corecore