7 research outputs found

    Carbonic anhydrase inhibition selectively prevents amyloid b neurovascular mitochondrial toxicity

    Full text link
    Mounting evidence suggests that mitochondrial dysfunction plays a causal role in the etiology and progression of Alzheimer’s disease (AD). We recently showed that the carbonic anhydrase inhibitor (CAI) methazolamide (MTZ) prevents amyloid b (Ab)-mediated onset of apoptosis in the mouse brain. In this study, we used MTZ and, for the first time, the analog CAI acetazolamide (ATZ) in neuronal and cerebral vascular cells challenged with Ab, to clarify their protective effects and mitochondrial molecular mechanism of action. The CAIs selectively inhibited mitochondrial dysfunction pathways induced by Ab, without affecting metabolic function. ATZ was effective at concentrations 10 times lower than MTZ. Both MTZ and ATZ prevented mitochondrial membrane depolarization and H2O2 generation, with no effects on intracellular pH or ATP production. Importantly, the drugs did not primarily affect calcium homeostasis. This work suggests a new role for carbonic anhydrases (CAs) in the Ab-induced mitochondrial toxicity associated with AD and cerebral amyloid angiopathy (CAA), and paves the way to AD clinical trials for CAIs, FDA-approved drugs with a well-known profile of brain delivery

    Methadone induces CAD degradation and AIF-mediated necrotic-like cell death in neuroblastoma cells

    No full text
    Methadone (d,l-methadone hydrochloride) is a full-opioid agonist, originally developed as a substitution for heroin or other opiates abusers. Nowadays methadone is also being applied as long-lasting analgesics in cancer, and it is proposed as a promising agent for leukemia therapy. Previously, we have demonstrated that high concentrations of methadone (0.5 mM) induced necrotic-like cell death in SH-SY5Y cells. The pathway involved is caspase-independent but involves impairment of mitochondrial ATP synthesis and mitochondrial cytochrome c release. However, the downstream mitochondrial pathways remained unclear. Here, we studied the participation of apoptosis inducing factor (AIF) in methadone-induced cell death. Methadone resulted in a translocation of AIF from mitochondria to the nucleus. Translocation was inhibited by cyclosporine A, but not by lack of Bax protein. Therefore the effect seems mediated by the formation of the mitochondrial transition pore, but is apparently independent of Bax. Furthermore, methadone-treated SH-SY5Y nuclei show characteristics that are typical for stage I nuclear condensation. Methadone did not induce degradation of DNA into oligonucleosomal fragments or into high molecular weight DNA fragments. Absence of DNA fragmentation coincided with a considerable decrease in the levels of the caspase-actived endonuclase DNase and its chaperone-inhibitor ICAD. In conclusion, our results provide mechanistic insights into the molecular mechanisms that underlie methadone-induced cell death. This knowledge may prove useful to develop novel strategies to prevent toxic side-effects of methadone thereby sustaining its use as therapeutical agent against tumors

    Overexpression of CB2 cannabinoid receptors results in neuroprotection against behavioral and neurochemical alterations induced by intracaudate administration of 6-hydroxydopamine

    No full text
    The role of CB2 cannabinoid receptors in the behavioral and neurochemical changes induced by intracaudate administration of 6-hydroxydopamine (6-OHDA) was evaluated. 6-OHDA (12 Όg/4 ΌL) or its vehicle was injected in the caudate-putamen (CPu) of mice overexpressing the CB2 cannabinoid receptor (CB2xP) and wild type (WT) mice. Motor impairment, emotional behavior, and cognitive alterations were evaluated. Tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule 1 (Iba-1) were measured by immunocytochemistry in the CPu and/or substantia nigra (SN) of CB2xP mice and WT mice. Oxidative/nitrosative and neuroinflammatory parameters were also measured in the CPu and cortex of 6-OHDA-treated and sham-treated mice. 6-OHDA-treated CB2xP mice presented significantly less motor deterioration than 6-OHDA-treated WT mice. Immunocytochemical analysis of tyrosine hydroxylase in the SN and CPu revealed significantly fewer lesions in CB2xP mice than in WT mice. GFAP and Iba-1 immunostaining revealed less astrocyte and microglia recruitment to the treated area of the CPu in CB2xP mice. Malonyldialdehyde (MDA) concentrations were lower in the striatum and cerebral cortex of sham-treated CB2xP mice than in sham-treated WT mice. The administration of 6-OHDA increased MDA levels in both WT mice and CB2xP mice; it increased the oxidized (GSSG)/reduced (GSH) glutathione ratio in the striatum in WT mice alone compared with matched sham-treated controls. The results revealed that overexpression of CB2 cannabinoid receptors decreased the extent of motor impairment and dopaminergic neuronal loss, reduced the recruitment of astrocytes and microglia to the lesion, and decreased the level of various oxidative parameters. These results suggest that CB2 receptors offer neuroprotection against dopaminergic injury. © 2012 Elsevier Inc.This work was also supported by the >Fundacion para la Investigacion Sanitaria en Castilla-La Mancha (FISCAM)> project PI-2008/21 to MFG, >Incorporacion de Grupos Emergentes> FIS-Carlos III and project PI-080693 from ISCII-Carlos III to MFG and MES. AT, JMPO, and AOA are postdoctoral fellows from FISCAM. MSGG and FN are predoctoral fellows from the Spanish Ministry of Health and the Spanish Ministry of Science and Innovation, respectively.Peer Reviewe

    Cannabidiol repairs behavioral and brain disturbances in a model of fetal alcohol spectrum disorder

    No full text
    Fetal alcohol spectrum disorder (FASD) includes neuropsychiatric disturbances related to gestational and lactational ethanol exposure. Available treatments are minimal and do not modulate ethanol-induced damage. Developing animal models simulating FASD is essential for understanding the underlying brain alterations and searching for efficient therapeutic approaches. The main goal of this study was to evaluate the effects of early and chronic cannabidiol (CBD) administration on offspring exposed to an animal model of FASD. Ethanol gavage (3 g/kg/12 h, p.o.) was administered to C57BL/6 J female mice, with a previous history of alcohol consumption, between gestational day 7 and postnatal day 21. On the weaning day, pups were separated by sex, and CBD administration began (30 mg/kg/day, i.p.). After 4–6 weeks of treatment, behavioral and neurobiological changes were analyzed. Mice exposed to the animal model of FASD showed higher anxiogenic and depressive-like behaviors and cognitive impairment that were evaluated through several experimental tests. These behaviors were accompanied by alterations in the gene, cellular and metabolomic targets. CBD administration normalized FASD model-induced emotional and cognitive disturbances, gene expression, and cellular changes with sex-dependent differences. CBD modulates the metabolomic changes detected in the hippocampus and prefrontal cortex. Interestingly, no changes were found in mitochondria or the oxidative status of the cells. These results suggest that the early and repeated administration of CBD modulated the long-lasting behavioral, gene and protein alterations induced by the FASD model, encouraging the possibility of performing clinical trials to evaluate the effects of CBD in children affected with FASD.This work was supported by “Instituto de Salud Carlos III” PI21/00488 and RD21/0009/0008 to JM and Start-Up funds and a Global Grant from Rutgers University to MES.Peer reviewe
    corecore