7,105 research outputs found

    Recovering hidden Bloch character: Unfolding Electrons, Phonons, and Slabs

    Full text link
    For a quantum state, or classical harmonic normal mode, of a system of spatial periodicity "R", Bloch character is encoded in a wavevector "K". One can ask whether this state has partial Bloch character "k" corresponding to a finer scale of periodicity "r". Answering this is called "unfolding." A theorem is proven that yields a mathematically clear prescription for unfolding, by examining translational properties of the state, requiring no "reference states" or basis functions with the finer periodicity (r,k). A question then arises, how should one assign partial Bloch character to a state of a finite system? A slab, finite in one direction, is used as the example. Perpendicular components k_z of the wavevector are not explicitly defined, but may be hidden in the state (and eigenvector |i>.) A prescription for extracting k_z is offered and tested. An idealized silicon (111) surface is used as the example. Slab-unfolding reveals surface-localized states and resonances which were not evident from dispersion curves alone.Comment: 11 pages, 7 figure

    Thermally stimulated H emission and diffusion in hydrogenated amorphous silicon

    Full text link
    We report first principles ab initio density functional calculations of hydrogen dynam- ics in hydrogenated amorphous silicon. Thermal motion of the host Si atoms drives H diffusion, as we demonstrate by direct simulation and explain with simple models. Si-Si bond centers and Si ring centers are local energy minima as expected. We also describe a new mechanism for break- ing Si-H bonds to release free atomic H into the network: a fluctuation bond center detachment (FBCD) assisted diffusion. H dynamics in a-Si:H is dominated by structural fluctuations intrinsic to the amorphous phase not present in the crystal.Comment: 4 pages, 5 figures, In press EPL (Jun. 2007

    Emergence of hierarchical networks and polysynchronous behaviour in simple adaptive systems

    Full text link
    We describe the dynamics of a simple adaptive network. The network architecture evolves to a number of disconnected components on which the dynamics is characterized by the possibility of differently synchronized nodes within the same network (polysynchronous states). These systems may have implications for the evolutionary emergence of polysynchrony and hierarchical networks in physical or biological systems modeled by adaptive networks.Comment: 4 pages, 4 figure

    An Imprint of Molecular Cloud Magnetization in the Morphology of the Dust Polarized Emission

    Full text link
    We describe a morphological imprint of magnetization found when considering the relative orientation of the magnetic field direction with respect to the density structures in simulated turbulent molecular clouds. This imprint was found using the Histogram of Relative Orientations (HRO): a new technique that utilizes the gradient to characterize the directionality of density and column density structures on multiple scales. We present results of the HRO analysis in three models of molecular clouds in which the initial magnetic field strength is varied, but an identical initial turbulent velocity field is introduced, which subsequently decays. The HRO analysis was applied to the simulated data cubes and mock-observations of the simulations produced by integrating the data cube along particular lines of sight. In the 3D analysis we describe the relative orientation of the magnetic field B\mathbf{B} with respect to the density structures, showing that: 1.The magnetic field shows a preferential orientation parallel to most of the density structures in the three simulated cubes. 2.The relative orientation changes from parallel to perpendicular in regions with density over a critical density nTn_{T} in the highest magnetization case. 3.The change of relative orientation is largest for the highest magnetization and decreases in lower magnetization cases. This change in the relative orientation is also present in the projected maps. In conjunction with simulations HROs can be used to establish a link between the observed morphology in polarization maps and the physics included in simulations of molecular clouds.Comment: (16 pages, 11 figures, submitted to ApJ 05MAR2013, accepted 07JUL2013

    First-Principles Study of Substitutional Metal Impurities in Graphene: Structural, Electronic and Magnetic Properties

    Get PDF
    We present a theoretical study using density functional calculations of the structural, electronic and magnetic properties of 3d transition metal, noble metal and Zn atoms interacting with carbon monovacancies in graphene. We pay special attention to the electronic and magnetic properties of these substitutional impurities and found that they can be fully understood using a simple model based on the hybridization between the states of the metal atom, particularly the d shell, and the defect levels associated with an unreconstructed D3h carbon vacancy. We identify three different regimes associated with the occupation of different carbon-metal hybridized electronic levels: (i) bonding states are completely filled for Sc and Ti, and these impurities are non-magnetic; (ii) the non-bonding d shell is partially occupied for V, Cr and Mn and, correspondingly, these impurties present large and localized spin moments; (iii) antibonding states with increasing carbon character are progressively filled for Co, Ni, the noble metals and Zn. The spin moments of these impurities oscillate between 0 and 1 Bohr magnetons and are increasingly delocalized. The substitutional Zn suffers a Jahn-Teller-like distortion from the C3v symmetry and, as a consequence, has a zero spin moment. Fe occupies a distinct position at the border between regimes (ii) and (iii) and shows a more complex behavior: while is non-magnetic at the level of GGA calculations, its spin moment can be switched on using GGA+U calculations with moderate values of the U parameter.Comment: 13 figures, 4 tables. Submitted to Phys. Rev. B on September 26th, 200

    Primary care in Malta : the patients’s expectations in 2009

    Get PDF
    Given the strong literature base to support the positioning of Primary Care at the core of a sustainable National Health Service, this study examines what the Maltese general public prefer, and expect, from their family doctor, and explores their preferred systems of care changes.peer-reviewe

    Fast diffusion of a Lennard-Jones cluster on a crystalline surface

    Full text link
    We present a Molecular Dynamics study of large Lennard-Jones clusters evolving on a crystalline surface. The static and the dynamic properties of the cluster are described. We find that large clusters can diffuse rapidly, as experimentally observed. The role of the mismatch between the lattice parameters of the cluster and the substrate is emphasized to explain the diffusion of the cluster. This diffusion can be described as a Brownian motion induced by the vibrationnal coupling to the substrate, a mechanism that has not been previously considered for cluster diffusion.Comment: latex, 5 pages with figure

    Magnetic field morphology in nearby molecular clouds as revealed by starlight and submillimetre polarization

    Full text link
    Within four nearby (d < 160 pc) molecular clouds, we statistically evaluate the structure of the interstellar magnetic field, projected on the plane of the sky and integrated along the line of sight, as inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz and from the optical and NIR polarization of background starlight. We compare the dispersion of the field orientation directly in vicinities with an area equivalent to that subtended by the Planck effective beam at 353 GHz (10') and using the second-order structure functions of the field orientation angles. We find that the average dispersion of the starlight-inferred field orientations within 10'-diameter vicinities is less than 20 deg, and that at these scales the mean field orientation is on average within 5 deg of that inferred from the submillimetre polarization observations in the considered regions. We also find that the dispersion of starlight polarization orientations and the polarization fractions within these vicinities are well reproduced by a Gaussian model of the turbulent structure of the magnetic field, in agreement with the findings reported by the Planck collaboration at scales greater than 10' and for comparable column densities. At scales greater than 10', we find differences of up to 14.7 deg between the second-order structure functions obtained from starlight and submillimetre polarization observations in the same positions in the plane of the sky, but comparison with a Gaussian model of the turbulent structure of the magnetic field indicates that these differences are small and are consistent with the difference in angular resolution between both techniques.Comment: 15 pages, 10 figures, submitted to A&

    Large-scale electronic structure theory for simulating nanostructure process

    Full text link
    Fundamental theories and practical methods for large-scale electronic structure calculations are given, in which the computational cost is proportional to the system size. Accuracy controlling methods for microscopic freedoms are focused on two practical solver methods, Krylov-subspace method and generalized-Wannier-state method. A general theory called the 'multi-solver' scheme is also formulated, as a hybrid between different solver methods. Practical examples are carried out in several insulating and metallic systems with 10^3-10^5 atoms. All the theories provide general guiding principles of constructing an optimal calculation for simulating nanostructure processes, since a nanostructured system consists of several competitive regions, such as bulk and surface regions, and the simulation is designed to reproduce the competition with an optimal computational cost.Comment: 19 pages, 6 figures. To appear in J. Phys. Cond. Matt. A preprint PDF file in better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm

    On a stationary spinning string spacetime

    Full text link
    The properties of a stationary massless string endowed with intrinsic spin are discussed. The spacetime is Minkowskian geometrically but the topology is nontrivial due to the horizon located on the surface r=0r=0, similar with Rindler's case. For rr less than the Planck length bb, gϕϕg_{\phi\phi} has the same sign as gttg_{tt} and closed timelike curves are possible. We assume an elementary particles' spin originates in the frame dragging effect produced by the rotation of the source. The Sagnac time delay is calculated and proves to be constant.Comment: revised version of hep-th/0602014 v1, 7 pages, title changed, sec.5 removed, talk given at "Recent Developments in Gravity" (NEB XII), Nafplio, Greece, 29 June 200
    • …
    corecore