19 research outputs found

    Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype

    Get PDF
    Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease.This work was funded by the European Union’s Horizon 2020 research and innovation programme (BATCure, grant No. 666918 to DLM, JPB, SEM, TB and SS). JPB is funded by the Agencia Estatal de Investigación (PID2019-105699RB-I00/ AEI / 10.13039/501100011033 and RED2018-102576-T), Plan Nacional sobre Drogas (2020I028), Junta de Castilla y León (Escalera de Excelencia CLU-2017-03), Ayudas Equipos Investigación Biomedicina 2017 Fundación BBVA and Fundación Ramón Areces. SS was funded by a grant from the Mila’s Miracle Foundation. TB was supported by German Research Council (DFG) grant FOR2625. SM benefits from MRC funding to the MRC Laboratory for Molecular Cell Biology University Unit at UCL (award code MC_U12266B) towards laboratory and office space. We acknowledge Marcella Cesana for providing the TFEB virus. Graphical abstract was created using BioRender.com

    Ambrogio Pozzi. Opere dalla collezione di famiglia

    No full text
    Catalogo della mostra (Varese, Rettorato dell'Università degli Studi dell'Insubria, 6 novembre 2019-14 febbraio 2020)

    Estimates of lava discharge rate of 2018 Kilauea Volcano, Hawai'i eruption using multi-sensor satellite and laboratory measurements

    No full text
    The 2018 lower East Rift Zone eruption (LERZ) at Kilauea Volcano, Hawai'i, was the largest event of the last 200 years at the LERZ. Here, we present a lava discharge rate estimation of this eruption by combining a joint analysis of multi-sensor infrared (IR) satellite remote sensing imagery of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) with laboratory measurements of lava properties. The time-averaged discharge rate (TADR) based estimation of the erupted lava volume resulted in circa 9.24 × 10^8 ± 4.62 × 10^8 m³ for the subaerial part of the 2018 LERZ eruption. The lava effusion at the LERZ began on 3 May 2018, with relatively low mean output rates of 2.82 ± 1.41 m³/s, which then almost doubled after 12 May to 4.94 ± 2.47 m³/s, increased after 19 May to 64.97 ± 32.48 m³/s and from 28 May onwards until beginning of August 2018 up to 137.67 ± 68.83 m³/s

    Joint multi-sensor infrared satellite and laboratory measurements for lava discharge rate estimation of 2018 Kilauea Volcano, Hawai'i eruption

    No full text
    Kilauea Volcano, Hawai'i, is one of the world's most active volcanoes. From 1983 to 2018 the magmatic system was in near continuous eruptions. This eruption ended on 30 April 2018 when the deflation of Kilauea caldera began and seismic data showed a dike intrusion from the Middle East Rift Zone of Kilauea Volcano downrift towards the Lower East Rift Zone (LERZ). On 3 May 2018, the first of final 24 eruptive fissures opened at the LERZ. This was the beginning of the largest effusive event of the last two hundred years at the LERZ. Here, we present a joint analysis of multi-sensor infrared (IR) Visible Infrared Imaging Radiometer Suite (VIIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite Earth observation data together with laboratory viscosity measurements to estimate the Time-Averaged Discharge Rate (TADR) and lava eruption volume of this large eruption event at the LERZ. After an TADR estimation performed independently for each sensor data in order to cross-check the results against each other, a joint timeseries of the VIIRS and MODIS TADR estimates was created to obtain more frequent measurements. This joint analysis of VIIRS and MODIS data resulted in an erupted lava volume of 0.924 ± 0.462 km³. Independent measurements based on airborne LIDAR and Synthetic Aperture Radar Interferometry (InSAR) topography changes are within the range of the IR data-based estimates of the erupted lava volume. Based on major element compositions of the eruptive products, the 2018 LERZ eruption could be differentiated into four main phases, which showed according to the VIIRS and MODIS-based TADR estimation a strong increase of the Mean Output Rate (MOR) during the evolution of the eruption from early/late Phase I, over Phase II until Phase III. This strong increase of the MOR during the different phases of the 2018 LERZ eruption agrees well with the evolution of the lava from low-temperature, highly differentiated lava flows in the beginning to high-temperature mafic more fluid lava from Phase II onwards, as observed in the field by the USGS

    Combining multi-sensor infrared satellite and laboratory measurements to estimate the lava discharge rate of 2018 Kilauea Volcano, Hawai'i eruption

    No full text
    Kilauea Volcano, Hawai'i, is one of the world’s most active volcanoes. From 1983 to 2018 the magmatic system was in near continuous eruptions. This eruption ended on 30 April 2018 when the deflation of Kilauea caldera began and a dike intrusion from the Middle East Rift Zone of Kilauea Volcano downrift towards the Lower East Rift Zone (LERZ) was observed in seismic data. On 3 May 2018, the first of final 24 eruptive fissures opened at the LERZ. This was the beginning of the largest effusive event of the last two centuries at the LERZ. Here, we present Time-Averaged Discharge Rate (TADR) and lava eruption volume estimations based on a joint analysis of multisensor infrared (IR) Visible Infrared Imaging Radiometer Suite (VIIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite Earth observation data together with laboratory viscosity measurements to investigate this large eruption event at the LERZ. First, the TADR measurements were performed independently for each sensor data to cross-check the results against each other. Second, a joint timeseries of the VIIRS and MODIS TADR estimates was created to obtain more frequent measurements. This joint analysis of VIIRS and MODIS data resulted in an erupted lava volume of 0.924 ± 0.462 km³. Independent measurements based on airborne Synthetic Aperture Radar Interferometry (InSAR) and LIDAR topography changes are within the range of the IR data-based estimates of the erupted lava volume. The 2018 LERZ eruption could be differentiated into four main phases based on major element compositions of the eruptive products. The VIIRS and MODIS-based TADR estimation showed a relatively low Mean Output Rate (MOR) of 2.82 ± 1.41 m³/s during early Phase I. MOR then almost doubled to 4.94 ± 2.47 m³/s in late Phase I. A strong increase of MOR to 64.97 ± 32.48 m³/s occurred during Phase II. In Phase III, MOR again doubled to 137.67 ± 68.83 m³/s. This strong increase of the MOR during the different phases of the 2018 LERZ eruption agrees well with the evolution of the lava from low-temperature, highly differentiated sluggish 'a'a lava flows in the beginning to high-temperature mafic more fluid pāhoehoe lava from Phase II onwards, as observed in the field by the USGS

    R990G polymorphism of calcium-sensing receptor does produce a gain-of-function and predispose to primary hypercalciuria

    Get PDF
    An association between the R990G polymorphism of the CaSR gene, coding for calcium-sensing receptor, and primary hypercalciuria was found in kidney stone formers. To confirm this relationship, we investigated hypercalciuric women without stones and studied the effect of CaSR gene in human embryonic kidney cells (HEK-293). We genotyped for CaSR A986S, R990G, and Q1011E polymorphisms, 119 normocalciuric and 124 hypercalciuric women with negative history of kidney stones. Homozygous (n=2) or heterozygous (n=21) women for the 990G allele considered as one group had an increased risk to be hypercalciuric (odds ratio=5.2; P=0.001) and higher calcium excretion (P=0.005) in comparison with homozygous women for the 990R allele (n=220). HEK-293 cells were transfected with the variant allele at the three CaSR gene polymorphisms and with the most common allele with no variants. The transient increment of intracellular calcium caused by the stepwise increase of extracellular calcium was evaluated in stable transfected cells loaded with fura-2AM. The extracellular calcium concentration producing the half-maximal intracellular calcium response was lower in HEK-293 cells transfected with the 990G allele than in those transfected with the wild-type allele (P=0.0001). Our findings indicate that R990G polymorphism results in a gain-of-function of the calcium-sensing receptor and increased susceptibility to primary hypercalciuria

    Light-responsive microRNA miR-211 targets Ezrin to modulate lysosomal biogenesis and retinal cell clearance

    No full text
    none20Vertebrate vision relies on the daily phagocytosis and lysosomal degradation of photoreceptor outer segments (POS) within the retinal pigment epithelium (RPE). However, how these events are controlled by light is largely unknown. Here, we show that the light-responsive miR-211 controls lysosomal biogenesis at the beginning of light–dark transitions in the RPE by targeting Ezrin, a cytoskeleton-associated protein essential for the regulation of calcium homeostasis. miR-211-mediated down-regulation of Ezrin leads to Ca2+ influx resulting in the activation of calcineurin, which in turn activates TFEB, the master regulator of lysosomal biogenesis. Light-mediated induction of lysosomal biogenesis and function is impaired in the RPE from miR-211−/− mice that show severely compromised vision. Pharmacological restoration of lysosomal biogenesis through Ezrin inhibition rescued the miR-211−/− phenotype, pointing to a new therapeutic target to counteract retinal degeneration associated with lysosomal dysfunction.mixedNaso F.; Intartaglia D.; Falanga D.; Soldati C.; Polishchuk E.; Giamundo G.; Tiberi P.; Marrocco E.; Scudieri P.; Di Malta C.; Trapani I.; Nusco E.; Salierno F.G.; Surace E.M.; Galietta L.J.V.; Banfi S.; Auricchio A.; Ballabio A.; Medina D.L.; Conte I.Naso, F.; Intartaglia, D.; Falanga, D.; Soldati, C.; Polishchuk, E.; Giamundo, G.; Tiberi, P.; Marrocco, E.; Scudieri, P.; Di Malta, C.; Trapani, I.; Nusco, E.; Salierno, F. G.; Surace, E. M.; Galietta, L. J. V.; Banfi, S.; Auricchio, A.; Ballabio, A.; Medina, D. L.; Conte, I

    TPC2 rescues lysosomal storage in mucolipidosis type IV, Niemann-Pick type C1, and Batten disease

    Get PDF
    Lysosomes are cell organelles that degrade macromolecules to recycle their components. If lysosomal degradative function is impaired, e.g., due to mutations in lysosomal enzymes or membrane proteins, lysosomal storage diseases (LSDs) can develop. LSDs manifest often with neurodegenerative symptoms, typically starting in early childhood, and going along with a strongly reduced life expectancy and quality of life. We show here that small molecule activation of the Ca2+ -permeable endolysosomal two-pore channel 2 (TPC2) results in an amelioration of cellular phenotypes associated with LSDs such as cholesterol or lipofuscin accumulation, or the formation of abnormal vacuoles seen by electron microscopy. Rescue effects by TPC2 activation, which promotes lysosomal exocytosis and autophagy, were assessed in mucolipidosis type IV (MLIV), Niemann-Pick type C1, and Batten disease patient fibroblasts, and in neurons derived from newly generated isogenic human iPSC models for MLIV and Batten disease. For in vivo proof of concept, we tested TPC2 activation in the MLIV mouse model. In sum, our data suggest that TPC2 is a promising target for the treatment of different types of LSDs, both in vitro and in-vivo

    Current methods to analyze lysosome morphology, positioning, motility and function.

    Get PDF
    Funder: Maratona da SaúdeFunder: Royal Society WolfsonFunder: Wellcome; Id: http://dx.doi.org/10.13039/100010269Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists
    corecore