166 research outputs found

    Clinical outcome of kidney transplantation in HIV-infected recipients: a retrospective study

    Get PDF
    Kidney transplantation is a safe and effective option for HIV-positive (HIV+) patients. We conducted a retrospective study on HIV+ kidney transplant recipients who underwent transplantation from March 2008 to September 2016.Inclusion criteria for transplantation were CD4ĂŸ T-cell count 200 per mm3 and undetectable HIV load. The current study reports the outcome of 19 HIV+ recipients, mostly of Caucasian origin (79%) with a median age of 50 years (interquartile range [IQR], 42–52), who were followed up for a median period of 2.4 years (IQR, 1.2–4.6) after transplantation. Compared with HIV-negative (HIV-) controls, HIV+ recipients had similar one- and three-year graft and patient survival, but significantly lower five-year patient survival (PÂŒ0.03). The differences in graft outcome became less evident with the analysis of death-censored graft survival rates. Cumulative incidence of allograft rejection at one year was 32.9%. Rates of infections were not particularly elevated and HIV replication remained well controlled in all but one patient. A high prevalence of metabolic and endocrine complications (68%) was reported after transplantation. Further studies are needed to evaluate long-term outcomes of HIV+ recipients who underwent kidney transplantation

    Oncological outcomes in fertility-sparing treatment in stage IA-G2 endometrial cancer

    Get PDF
    Background: The gold standard treatment for early-stage endometrial cancer (EC) is hysterectomy with bilateral salpingo-oophorectomy (BSO) with lymphadenectomy. In selected patients desiring pregnancy, fertility-sparing treatment (FST) can be adopted. Our review aims to collect the most incisive studies about the possibility of conservative management for patients with grade 2, stage IA EC. Different approaches can be considered beyond demolition surgery, such as local treatment with levonorgestrel-releasing intra-uterine device (LNG-IUD) plus systemic therapy with progestins. Study design: Our systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. PubMed, EMBASE, and Scopus databases were consulted, and five studies were chosen based on the following criteria: patients with a histological diagnosis of EC stage IA G2 in reproductive age desiring pregnancy and at least one oncological outcome evaluated. Search imputes were “endometrial cancer” AND “fertility sparing” AND “oncologic outcomes” AND “G2 or stage IA”. Results: A total of 103 patients were included and treated with a combination of LNG-IUD plus megestrol acetate (MA) or medroxyprogesterone acetate (MPA), gonadotrophin-releasing hormone (GnRH) plus MPA/MA, hysteroscopic resectoscope (HR), and dilation and curettage (D&C). There is evidence of 70% to 85% complete response after second-round therapy prolongation to 12 months. Conclusions: Conservative measures must be considered temporary to allow pregnancy and subsequently perform specific counseling to adopt surgery. Fertility-sparing management is not the current standard of care for young women with EC. It can be employed for patients with early-stage diseases motivated to maintain reproductive function. Indeed, the results are encouraging, but the sample size must be increased

    Pilot Study on Quantitative Cervical Cord and Muscular MRI in Spinal Muscular Atrophy: Promising Biomarkers of Disease Evolution and Treatment?

    Get PDF
    Introduction: Nusinersen is a recent promising therapy approved for the treatment of spinal muscular atrophy (SMA), a rare disease characterized by the degeneration of alpha motor neurons (αMN) in the spinal cord (SC) leading to progressive muscle atrophy and dysfunction. Muscle and cervical SC quantitative magnetic resonance imaging (qMRI) has never been used to monitor drug treatment in SMA. The aim of this pilot study is to investigate whether qMRI can provide useful biomarkers for monitoring treatment efficacy in SMA. Methods: Three adult SMA 3a patients under treatment with nusinersen underwent longitudinal clinical and qMRI examinations every 4 months from baseline to 21-month follow-up. The qMRI protocol aimed to quantify thigh muscle fat fraction (FF) and water-T2 (w-T2) and to characterize SC volumes and microstructure. Eleven healthy controls underwent the same SC protocol (single time point). We evaluated clinical and imaging outcomes of SMA patients longitudinally and compared SC data between groups transversally. Results: Patient motor function was stable, with only Patient 2 showing moderate improvements. Average muscle FF was already high at baseline (50%) and progressed over time (57%). w-T2 was also slightly higher than previously published data at baseline and slightly decreased over time. Cross-sectional area of the whole SC, gray matter (GM), and ventral horns (VHs) of Patients 1 and 3 were reduced compared to controls and remained stable over time, while GM and VHs areas of Patient 2 slightly increased. We found altered diffusion and magnetization transfer parameters in SC structures of SMA patients compared to controls, thus suggesting changes in tissue microstructure and myelin content. Conclusion: In this pilot study, we found a progression of FF in thigh muscles of SMA 3a patients during nusinersen therapy and a concurrent slight reduction of w-T2 over time. The SC qMRI analysis confirmed previous imaging and histopathological studies suggesting degeneration of αMN of the VHs, resulting in GM atrophy and demyelination. Our longitudinal data suggest that qMRI could represent a feasible technique for capturing microstructural changes induced by SMA in vivo and a candidate methodology for monitoring the effects of treatment, once replicated on a larger cohort

    Leftovers:The presence of manufacture-derived aquatic lipids in Alaskan Pottery

    Get PDF
    Lipids preserved within the walls of ancient pottery vessels are routinely analysed to reveal their original contents. The provenience of aquatic lipids in pottery is generally connected to vessel function (e.g., for cooking or storing fish, shellfish and aquatic mammals). However, ethnographic reports from early historic Alaska mention the use of aquatic oils for waterproofing low-fired pottery. Results of lipid residue studies on Alaskan pottery reflect an exclusive function of pottery to process aquatic resources. However, can one be sure these residues are the product of vessel function and not a remnant of the manufacturing process? The study presents the results of an experiment where the preservation of aquatic lipids during the firing process at different temperatures was measured. It was found that nearly all lipids were removed at firing temperatures of ≄ 400°C. Petrographic analysis of Alaskan pottery samples indicates that firing temperatures were generally &gt; 550°C but &lt; 800°C. The contribution of pre-firing manufacture-derived lipids to samples fired at these temperatures may be regarded as negligible. While the possible presence of aquatic lipids from post-firing surface treatments cannot be excluded, such treatments appear unnecessary for well-fired pottery.</p

    Evaluating the capability of regional-scale air quality models to cature the vertical distribution of pollutants

    Get PDF
    This study is conducted in the framework of the Air Quality Modelling Evaluation International Initiative (AQMEII) and aims at the operational evaluation of an ensemble of 12 regional-scale chemical transport models used to predict air quality over the North American (NA) and European (EU) continents for 2006. The modelled concentrations of ozone and CO, along with the meteorological fields of wind speed (WS) and direction (WD), temperature (T), and relative humidity (RH), are compared against high-quality in-flight measurements collected by instrumented commercial aircraft as part of the Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by Airbus In-service airCraft (MOZAIC) programme. The evaluation is carried out for five model domains positioned around four major airports in NA (Portland, Philadelphia, Atlanta, and Dallas) and one in Europe (Frankfurt), from the surface to 8.5 km. We compare mean vertical profiles of modelled and measured variables for all airports to compute error and variability statistics, perform analysis of altitudinal error correlation, and examine the seasonal error distribution for ozone, including an estimation of the bias introduced by the lateral boundary conditions (BCs). The results indicate that model performance is highly dependent on the variable, location, season, and height (e.g. surface, planetary boundary layer (PBL) or free troposphere) being analysed. While model performance for T is satisfactory at all sites (correlation coefficient in excess of 0.90 and fractional bias ≀ 0.01 K), WS is not replicated as well within the PBL (exhibiting a positive bias in the first 100 m and also underestimating observed variability), while above 1000 m, the model performance improves (correlation coefficient often above 0.9). The WD at NA airports is found to be biased in the PBL, primarily due to an overestimation of westerly winds. RH is modelled well within the PBL, but in the free troposphere large discrepancies among models are observed, especially in EU. CO mixing ratios show the largest range of modelled-to-observed standard deviations of all the examined species at all heights and for all airports. Correlation coefficients for CO are typically below 0.6 for all sites and heights, and large errors are present at all heights, particularly in the first 250 m. Model performance for ozone in the PBL is generally good, with both bias and error within 20%. Profiles of ozone mixing ratios depend strongly on surface processes, revealed by the sharp gradient in the first 2 km (10 to 20 ppb km−1). Modelled ozone in winter is biased low at all locations in the NA, primarily due to an underestimation of ozone from the BCs. Most of the model error in the PBL is due to surface processes (emissions, transport, photochemistry), while errors originating aloft appear to have relatively limited impact on model performance at the surface. Suggestions for future work include interpretation of the model-to-model variability and common sources of model bias, and linking CO and ozone bias to the bias in the meteorological fields. Based on the results from this study, we suggest possible in-depth, process-oriented and diagnostic investigations to be carried out next

    Mitochondrial Localization of ABC Transporter ABCG2 and Its Function in 5-Aminolevulinic Acid-Mediated Protoporphyrin IX Accumulation

    Get PDF
    Accumulation of protoporphyrin IX (PpIX) in malignant cells is the basis of 5-aminolevulinic acid (ALA)-mediated photodynamic therapy. We studied the expression of proteins that possibly affect ALA-mediated PpIX accumulation, namely oligopeptide transporter-1 and -2, ferrochelatase and ATP-binding cassette transporter G2 (ABCG2), in several tumor cell lines. Among these proteins, only ABCG2 correlated negatively with ALA-mediated PpIX accumulation. Both a subcellular fractionation study and confocal laser microscopic analysis revealed that ABCG2 was distributed not only in the plasma membrane but also intracellular organelles, including mitochondria. In addition, mitochondrial ABCG2 regulated the content of ALA-mediated PpIX in mitochondria, and Ko143, a specific inhibitor of ABCG2, enhanced mitochondrial PpIX accumulation. To clarify the possible roles of mitochondrial ABCG2, we characterized stably transfected-HEK (ST-HEK) cells overexpressing ABCG2. In these ST-HEK cells, functionally active ABCG2 was detected in mitochondria, and treatment with Ko143 increased ALA-mediated mitochondrial PpIX accumulation. Moreover, the mitochondria isolated from ST-HEK cells exported doxorubicin probably through ABCG2, because the export of doxorubicin was inhibited by Ko143. The susceptibility of ABCG2 distributed in mitochondria to proteinase K, endoglycosidase H and peptide-N-glycosidase F suggested that ABCG2 in mitochondrial fraction is modified by N-glycans and trafficked through the endoplasmic reticulum and Golgi apparatus and finally localizes within the mitochondria. Thus, it was found that ABCG2 distributed in mitochondria is a functional transporter and that the mitochondrial ABCG2 regulates ALA-mediated PpIX level through PpIX export from mitochondria to the cytosol

    Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data

    Get PDF
    © 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Ioannis Kioutsioukis, et al, ‘Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data’, Atmospheric Chemistry and Physics, Vol 16(24): 15629-15652, published 20 December 2016, the version of record is available at doi:10.5194/acp-16-15629-2016 Published by Copernicus Publications on behalf of the European Geosciences Union.Simulations from chemical weather models are subject to uncertainties in the input data (e.g. emission inventory, initial and boundary conditions) as well as those intrinsic to the model (e.g. physical parameterization, chemical mechanism). Multi-model ensembles can improve the forecast skill, provided that certain mathematical conditions are fulfilled. In this work, four ensemble methods were applied to two different datasets, and their performance was compared for ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM10). Apart from the unconditional ensemble average, the approach behind the other three methods relies on adding optimum weights to members or constraining the ensemble to those members that meet certain conditions in time or frequency domain. The two different datasets were created for the first and second phase of the Air Quality Model Evaluation International Initiative (AQMEII). The methods are evaluated against ground level observations collected from the EMEP (European Monitoring and Evaluation Programme) and AirBase databases. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill over the single models and the ensemble mean. Verification statistics show that the deterministic models simulate better O3 than NO2 and PM10, linked to different levels of complexity in the represented processes. The unconditional ensemble mean achieves higher skill compared to each station's best deterministic model at no more than 60 % of the sites, indicating a combination of members with unbalanced skill difference and error dependence for the rest. The promotion of the right amount of accuracy and diversity within the ensemble results in an average additional skill of up to 31 % compared to using the full ensemble in an unconditional way. The skill improvements were higher for O3 and lower for PM10, associated with the extent of potential changes in the joint distribution of accuracy and diversity in the ensembles. The skill enhancement was superior using the weighting scheme, but the training period required to acquire representative weights was longer compared to the sub-selecting schemes. Further development of the method is discussed in the conclusion.Peer reviewedFinal Published versio

    The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990-2018

    Get PDF
    Reliable quantification of the sources and sinks of atmospheric carbon dioxide (CO2), including that of their trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Kyoto Protocol and the Paris Agreement. This study provides a consolidated synthesis of estimates for all anthropogenic and natural sources and sinks of CO2 for the European Union and UK (EU27 + UK), derived from a combination of state-of-the-art bottom-up (BU) and top-down (TD) data sources and models. Given the wide scope of the work and the variety of datasets involved, this study focuses on identifying essential questions which need to be answered to properly understand the differences between various datasets, in particular with regards to the less-well-characterized fluxes from managed ecosystems. The work integrates recent emission inventory data, process-based ecosystem model results, data-driven sector model results and inverse modeling estimates over the period 1990-2018. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported under the UNFCCC in 2019, aiming to assess and understand the differences between approaches. For the uncertainties in NGHGIs, we used the standard deviation obtained by varying parameters of inventory calculations, reported by the member states following the IPCC Guidelines. Variation in estimates produced with other methods, like atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arises from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. In comparing NGHGIs with other approaches, a key source of uncertainty is that related to different system boundaries and emission categories (CO2 fossil) and the use of different land use definitions for reporting emissions from land use, land use change and forestry (LULUCF) activities (CO2 land). At the EU27 + UK level, the NGHGI (2019) fossil CO2 emissions (including cement production) account for 2624 Tg CO2 in 2014 while all the other seven bottom-up sources are consistent with the NGHGIs and report a mean of 2588 (± 463 Tg CO2). The inversion reports 2700 Tg CO2 (± 480 Tg CO2), which is well in line with the national inventories. Over 2011-2015, the CO2 land sources and sinks from NGHGI estimates report-90 Tg C yr-1 ± 30 Tg C yr-1 while all other BU approaches report a mean sink of-98 Tg C yr-1 (± 362 Tg of C from dynamic global vegetation models only). For the TD model ensemble results, we observe a much larger spread for regional inversions (i.e., mean of 253 Tg C yr-1 ± 400 Tg C yr-1). This concludes that (a) current independent approaches are consistent with NGHGIs and (b) their uncertainty is too large to allow a verification because of model differences and probably also because of the definition of "CO2 flux"obtained from different approaches. The referenced datasets related to figures are visualized. © 2021 Ana Maria Roxana Petrescu et al
    • 

    corecore