
Gynecologic Oncology xxx (xxxx) xxx

Contents lists available at ScienceDirect

Gynecologic Oncology

journal homepage: www.elsevier.com/locate/ygyno

Systematic Review

Laparo-assisted vaginal radical hysterectomy as a safe option for Minimal Invasive Surgery in early stage cervical cancer: A systematic review and meta-analysis

Carlo Ronsini^{a,*}, Christhardt Köhler^{b,c}, Pasquale De Franciscis^a, Marco La Verde^a, Lavinia Mosca^a, Maria Cristina Solazzo^a, Nicola Colacurci^a

^a Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy

^b Department of Gynecology, Medical Faculty of the University of Cologne, Koln, Germany

^c Department of Special Operative and Oncologic Gynecology, Asklepios Klinik Altona, Hamburg, Germany

HIGHLIGHTS

• Laparo-Assisted Vaginal Hysterectomy could represent a valid and safe option to Abdominal Radical Hysterectomy in Early stage Cervical Cancer.

Vaginal Cuff creation prevent tumor's spillage

· Laparo-Assisted Vaginal Hysterectomy does not appear to affect Disease Free Survival and Overall Survival in Early stage Cervical Cancer.

ARTICLE INFO

Article history: Received 10 March 2022 Received in revised form 5 April 2022 Accepted 11 April 2022 Available online xxxx

Keywords: Early stage cervical cancer Laparo-Assisted Vaginal Radical Hysterectomy LARVH Minimal Invasive Surgery MIS Vaginal cuff

ABSTRACT

Background. Radical hysterectomy and pelvic lymphadenectomy are considered the standard treatment for early-stage cervical cancer (ECC). Minimal Invasive approach to this surgery has been debated after the publication of a recent prospective randomized trial (Laparoscopic Approach to Cervical Cancer, LACC trial). It demonstrated poorer oncological outcomes for Minimal Invasive Surgery in ECC. However, the reasons are still an open debate. Laparo-Assisted Vaginal Hysterectomy (LAVRH) seems to be a logical option to Abdominal Radical Hysterectomy (ARH). This meta-analysis has the aim to prove it.

Methods. Following the recommendations in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, the Pubmed database and Scopus database were systematically searched in January 2022 since early first publications. No limitation of the country was made. Only English article were considered. The studies containing data about Disease-free Survival (DFS) and/or Overall Survival (OS) and/or Recurrence Rate (RcR) were included.

Results. 19 studies fulfilled inclusion criteria. 9 comparative studies were enrolled in meta-analysis. Patients were analyzed concerning surgical approach (Laparo-Assisted Vaginal Radical Hysterectomy) and compared with ARH Oncological outcomes such as DFS and OS were considered. 3196 patiets were included for the review. Meta-analysis of 1988 0f them highlighted a non-statistic significant difference between LARVH and ARH (RR 0.8 [95% CI 0.55–1.16] p = 0.24; $l^2 = 0$ %; p = 0.98). OS was feasible only for 4 studies (RR 0.84 [95% CI 0.23–3.02] p = 0.79; $l^2 = 0 p = 0.44$). Sub-analysis for tumor with a maximum diameter greater than 2 cm was performed. Data about the type of recurrences (loco-regional vs distant) were collected.

Conclusion. LARVH does not appear to affect DFS and OS in ECC patients. The proposed results seem to be comparable with the open approach group of the LACC trial, which today represents the reference standard for the treatment of this pathology. More studies will be needed to test the safety and efficacy of LARVH in the ECC. © 2022 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: carlo.ronsini@unicampania.it (C. Ronsini), ch.koehler@asklepios.com (C. Köhler).

https://doi.org/10.1016/j.ygyno.2022.04.010 0090-8258/© 2022 Elsevier Inc. All rights reserved.

Please cite this article as: C. Ronsini, C. Köhler, P. De Franciscis, et al., Laparo-assisted vaginal radical hysterectomy as a safe option for Minimal Invasive Surgery in early ..., Gynecologic Oncology, https://doi.org/10.1016/j.ygyno.2022.04.010

C. Ronsini, C. Köhler, P. De Franciscis et al.

Contents

1.	Introduction
2.	Material and methods
	2.1. Search method
	2.2. Study selection
	2.3. Statistical analysis
	2.4. Quality assessment
3.	Results
	3.1. Studies' characteristics
	3.2. Surgical technique
	3.3. Oncological outcomes
	3.4. Meta-analysis
4.	Discussion
5	Conclusion
Cor	flict of interest disclosure.
	ediT authorship contribution statement.
	pendix A. Supplementary data
11	
Ker	$\mathbf{C} = \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C}$

1. Introduction

Radical hysterectomy and pelvic lymphadenectomy are considered the recommended standard treatment for early-stage cervical cancer [1,2]. In the last decades, minimally invasive surgery (MIS) has replaced the open approach of Abdominal Radical Hysterectomy (ARH) because of its benefits in postoperative outcomes [3]. Oncological safety of MIS came out from retrospective series and have never been tested by a Randomized Clinical Control Trial till publishing of Laparoscopic Approach to Cervical Cancer, LACC trial by P. Ramirez et al. in November 2018 [4]. This trial proved the oncological superiority of ARH to MIS, represented by Laparoscopic Radical Hysterectomy (LRH) or Robotic Radical Hysterectomy (RRH), both in terms of Disease-free survival (DFS) and Overall Survival (OS). However, the causes of those differences remain still an open issue. MIS techniques more often are associated with the use of uterine manipulators [5–7]. Moreover, the vaginal cuff is opened laparoscopically above the manipulator rim potentially exposing tumor cells to the abdominal cavity and leading to their spread by CO2 circulation [8]. In this scenario, Laparo-Assisted Vaginal Hysterectomy (LARVH), by creating a secure vaginal cuff around the tumor, represent a valid option to avoid those condition and preserve Basic principles of oncologic surgery such as avoidance of tumor spillage and careful tumor manipulation [9].

2. Material and methods

The methods for this study were specified a priori based on the recommendations in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [10].

2.1. Search method

A systematic search for articles about LARVH and Early-stage Cervical Cancer (ECC) in Pubmed Database and Scopus Database was performed in January 2022. No data limitation was performed. No restriction of the country was performed. Only English fully published studies were considered. Search imputes were (("Minimally Invasive Surgical Procedures"[Mesh]) OR "Laparoscopy"[Mesh] OR "LARVH" [Text Word])) AND ("Uterine Cervical Neoplasms"[Mesh] OR "early cervical cancer" [Text Word]) for Pubmed Database; and (TITLE-ABS-KEY (minimal* AND invasive AND surgery) OR TITLE-ABS-KEY (laparoscopic*) OR TITLE-ABS KEY (larvh) AND TITLE-ABS- KEY (cervical AND cancer) OR TITLE-ABS- KEY (early AND cervical AND cancer)) AND (LIMIT- TO (PUBSTAGE, "final")) AND (LIMIT-TO (DOCTYPE, "ar")) AND (LIMIT- TO (LANGUAGE, "English")) for Scopus Database.

2.2. Study selection

Study selection was done independently by CR and CK. In case of discrepancy NC decided for inclusion or exclusion. Inclusion criteria were: (1) studies that included patients with early cervical cancer FIGO 2009 stage IA1, IA2, IB1, IB2, IIA1; (2) studies that reported at least one outcome of interest (DFS and/or OS and/or Recurrence Rate); (3) peerreviewed articles, published originally. Non-original studies, preclinical trials, animal trials, abstract-only publications, articles in a language other than English were excluded. If possible, the authors of studies that were only published as congress abstracts were tried to be contacted via email and asked to provide their data. The studies selected and all reasons for exclusion are mentioned in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart (Fig. 1).

All included studies were assessed regarding potential conflicts of interest.

2.3. Statistical analysis

Heterogeneity among the studies was tested using the Chi-square test and I-square tests [11]. The risk rate (RR) and 95% confidence intervals (CI) were used for dichotomous variables. Statistical analysis was conducted by fixed-effect models in the absence of significant heterogeneity ($I^2 < 50\%$), or random-effect models if $I^2 > 50\%$. DFS and OS were used as clinical outcomes. In each study, Disease-free survival was defined as the time elapsed between surgery and recurrence or the date of the last follow-up. Overall survival has been defined as the time elapsed between surgery and death for cervical cancer or the date of the last follow up. Chi-square tests were used to compare continuous variables. Subgroup analysis in patients with tumor size greater than 2 cm in maximum dimension was performed. Review Manager version 5.4.1 (REVman 5.4.1) and IBM Statistical Package for Social Science (IBM SPSS vers 25.0) for MAC were used for statistic calculation. For all performed analyses a p-value <0.05 was considered significant.

2.4. Quality assessment

Assessment of the quality of the included studies was conducted by using the Newcastle– Ottawa scale (NOS) [12]. This assessment scale

C. Ronsini, C. Köhler, P. De Franciscis et al.

Gynecologic Oncology xxx (xxxx) xxx

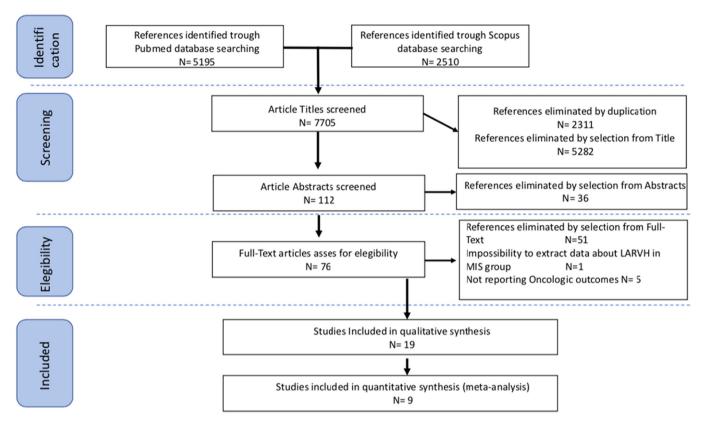


Fig. 1. PRISMA flowchart.

uses three broad factors (selection, comparability, and exposure), with the scores ranging from 0 (lowest quality) to 8 (best quality). Two authors (CR and CK) independently rated the study's quality. Any disagreement was subsequently resolved by discussion or consultation with NC. NOS Scale is reported in Supplementary.

A funnel plot analysis was used to assess publication bias. Egger's regression test was used to determine the asymmetry of funnel plots (Supplementary).

3. Results

3.1. Studies' characteristics

After the databases search, a total of 7705 articles was matching the searching criteria. After removing records with no full-text, duplicates and wrong study designs (e.g. reviews), 76 were suitable for eligibility. Of those, 19 matched inclusion criteria and were included in the systematic review. 9 of them were non-comparative, single-armed studies evaluating only LARVH. 1 was a comparative study between LARVH and Laparo-Assisted Vaginal Trachelectomy. The other 9 were comparative studies between LAVRH and ARH and were included in quantitative analysis (Fig. 1). The countries where the studies were conducted, the publication year range, the studies' design, FIGO stage of cervical cancer and number of participants are summarized in Table 1.

The quality of all studies was assessed by NOS [12] (Supplementaries). Overall, the publication years ranged from 1986 to 2019. In total, 3196 patients with surgical treatment for early cervical carcinoma were included. Follow up period ranged from 21 to 113 months on average.

3.2. Surgical technique

The included studies examined the use of laparoscopic-assisted radical vaginal hysterectomy LARVH for combined laparoscopic staging and vaginal radical resection of parametria, as firstly described by D. Dargent [32] in 1987 with the name of Coelio-Schauta. Despite a lack of standardization, all studies were based on the principle of preventing direct exposure of tumor tissue to the abdominal cavity. This was possible either by the creation of a vaginal cuff or closing of the vaginal cuff by suture or permanent tie. Although preparation of the surgical spaces, depending on the authors, may precede or follow this step, the opening of the vesicovaginal septa or the Douglas, as well as the parametrial resection occurs only after the incarceration of the tumor tissue by the vaginal cuff.

The creation of the vaginal cuff can precede or follow trocar placement, pneumoperitoneum induction, or all laparoscopic steps, depending on the study population.

Li et al. [15] represent the only substantial variation to this technique. A cuppy uterine manipulator was placed around the tumor ensuring that the entire tumor was enclosed in the cup. By laparoscopy, a tie was tightened about 4 cm from the external cervix, then the uterus was resected along the underside of the tie.

Even if this technique is different from the one described by Dargent, it was considered eligible for the review, because it preserves the oncological principle of safety, such as avoidance of tumor spillage and careful tumor manipulation.

Except for Li [16], Park [17] and Kwon [27], all the other studies avoided the use of uterine manipulators. Moreover, Kanno [14], Fugesi [24] and Kanao [26] explixity declared that they systematically removed surgical specimens into a collection bag. No data about surgical speciment retrival were reported in the other studies.

In all the studies, the ovaries were either resected or left in situ according to the stage, the guidelines indications [1,2] and the patient's desire to preserve ovarian function. The radicality of parametrectomy was modulated on tumor's risk factors such as dimension, stromal invasion, LVSI and FIGO staging, according to Querleu-Morrow Classification [32] or Piver Classification [33] and principal international Guidelines [1,2].

Laparoscopic systematic pelvic lymphadenectomy and pelvic space creation were described as steps in all the series.

C. Ronsini, C. Köhler, P. De Franciscis et al.

Table 1

Studies included.

Not comparative studi	es						
Name	Country	Country Study design Study Year		FIGO stage	N of partecipant	Mean FUP ^a months	
Hertel [13] 2003	Germany	Prospective Observational Monocentric study	1994-2002	IA1-IB1	110 ^b	40	
Kanno [14] 2019	Japan	Retrospective Observational Monocentric study	2006-2015	IA1-IB1	109	73	
Köhler [15] 2019	Germany	Retrospective Observational Monocentric study	1994-2018	IA1-IIA1	389	99	
Li [16] 2022	China	Retrospective Observational Monocentric study	2012-2017	IA1-IB1	137	53	
Marchiole [17] 2007	France	Retrospective Case-Control Monocentric study	1986-2003	IA1-IIA	139 ^b	113	
Park [18] 2002	Rep of Korea	Case Series Report Monocentric	Lac of data-2002	IB1 < 3 cm	52	45	
Querleu [19] 1993	France	Case Series Report Monocentric	1990-1992	IA2-IIB	8	24	
Renaud [20] 2000	France	Retrospective Observational Monocentric study	1993-1999	IA1-IIA	102	36	
Sardi [21] 1999	Argentina	Prospective Observational Monocentric study	1993-1997	IA2-IIB	47 ^b	48	
Torné [22] 2021	Spain	Retrospective Observational Multicentric study	2001-2018	IA1-IIA1	115	88	
Comparative Studies, I	ncluded for meta-and	alysis					
Chiva [23] 2021	European	Retrospective Case-Control Multicentric study	2013-2014	IB1	445 ^b	59	
Fugesi [24] 2021	Japan	Retrospective Case-Control Multicentric study	2014-2019	IA2-IIA1	231	39	
Jackson [25] 2004	United Kingdom	Prospective matched Control Monocentric study	1996-2003	IA2-IB2	100	50	
Kanao [26] 2019	Japan	Retrospective Case-Control Monocentric study	2014-2017	IB1	163	31	
Kwon [27] 2020	Rep of Korea	Retrospective Case-Control Multicentric study	2008-2017	IA2-IB2	510	82	
Morgan [28] 2007	Ireland	Retrospective Case-Control Monocentric study	2000-2005	IA1-IIB	60	31	
Nam [29] 2004	Rep of Korea	Retrospective Case-Control Monocentric study	1997-2002	IA1-IB1	136	39	
Sharma [30] 2006	United Kingdom	Retrospective Case-Control Monocentric study	1999-2005	IA2-IIB	67	34	
Steed [31] 2004	Canada	Retrospective Case-Control Monocentric study	1996-2003	IA1-IB2	276	21	

^a Follow up.

^b Sub-analysis of the entire cohort.

3.3. Oncological outcomes

A total of 3196 patients were included in the review. 18 of the 19 selected studies presented DFS data. One other by Querleu [19] showed only data about recurrence rate. Except for Chiva [23], Nam [29], Park [18], Sharma [30] and Steed [31], the other 13 studies presented OS data. In addition, the study by Hartel et al [13] and the study by Koheler et al [15] show a potential overlap of part of patients, as they are studies conducted by the same teams at the same institution at different time.

By alphabetic, Chiva et al. [23] performed a retrospective comparison between MIS and ARH. Data about LARVH sub-analysis were shown with a total of 445 patients (43 for LARVH and 402 for ARH). It highlighted a 4.5 DFS of 93%, with a mean Follow-Up (FUP) of 59 months. Fugesi et al. [24] showed a population of 113 ECC undergone to LARVH with 3 years and 5 years DFS of 92.4% and 90.9% respectively, and 3 years and 4.5 years OS of 100% and 100% with 39 months FUP in average. Hertel et al. [13] published in 2002 a prospective observational study with a recruitment of 8 years (from 1994 to 2002) and a mean FUP of 40 months. All stages of cervical cancer were enrolled with a cumulative OS of 83%. But, a sub-analysis about 110 patients with stage ≤IB1 reported a 4.5 years DFS and OS of 94% and 98% respectively. Jackson et al. [25] published a direct comparison between LARVH and ARH with a match controlled study. The 50 patients of each arm presented a non-statistically significant identical rate of RcR, DFS and OS (Respectively 4%; 96% and 94%). Kanao et al. [26] proposed a 3 years DFS and OS of 94.4% and 100% in a population of 80 patients with a mean FUP of 31 months. Kanno et al. [14] examined a population of 109 with a 5 years DFS of 96.3% and a 5 years OS of 97.2% after 77 months mean FUP. Köhler et al. [15] proposed the largest series with 389 patients undergone to LARVH and the longest mean FUP of 99 months (3 years DFS 96.8%; 3 years OS 98.5%; 4.5 years DFS 95.7%; 4.5 years DFS 97.6%). Kwon et al. [27], vice versa, reported the largest comparative study, with the arm of LARVH composed of 252 patients, which presented a 5 years DFS and OS of 86.6% and 88% during a mean of 82 months FUP. Li et al. [16] is the latest article published, with 137 patients and 53 months of FUP, showing a 5 years DFS of 96.4% and 5 years OS of 96.8%. Marchiole et al. [17] focused on difference between LARVH and Laparo-Assisted Vaginal Radical Trachelectomy. Data about LARVH arm were retrived with a 4.5 years DFS of 94.7% and 4.5 OS of 95% in 139 patients followed up with a mean of 113 months. Morgan et al. [28], between 2000 and

2005, treated 30 patients with LARVH approach and 30 with ARH and compared them in a retrospective analysis. Even if ECC was an inclusion criterion, parametrial involvement was proved in 3 patients of ARH arm, which were upstaged to IIB FIGO stage. LARVH group presented a 3 years DFS and a 3 years OS 92.3% and 96.7%, respectively. Nam et al. [29], as well, compared 47 LARVH operation for ECC with 96 ARH. With a mean FUP of 39 months, a 3 years DFS of 97.1% was observed in LARVH group and 98.9% in ARH (*p* = 0.63). Park et al. [18] in 2002 published a case series of 52 IB1 ECC treated with LARVH in them institution, with a 4.5 years DFS of 96.2% and a mean FUP of 45 months. Ouerleu [19] presented the really first case series of LARVH for ECC, presenting data about 8 patients in 1993. This study focused on feasibility of the technique, but 2 recurrence were reported (25%) in the 24 months of FUP. Renaud et al. [20], conversely, proved a RcR of 4% in 102 patients, with a 3 years DFS of 96% and OS of 98% after 36 months of FUP. Sardi et al. [21] conducted an observational study about learning curve of LARVH technique. Of the 56 patients eligible for the procedure, 47 completed it, with a 4.5 years DFS and OS both of 91.5%. Sharma et al. [30] compared 35 consecutive patients treated undergone to LARVH in the period between 1999 and 2005 with 32 patients which received an Open approach. In a mean of 34 months of FUP, RcR was respectively 5.7% and 6.2% in LARVH and ARH groups (p = NS). Steed et al. [31] enrolled 276 patients with ECC. Of them, 71 were treated by LARVH and 205 with ARH. No randomization was performed, and the choice of which technique to use was demanded to the surgeon. After a mean FUP of only 21 months, both arms presented a DFS of 94% (p = NS). Lastly, Torné et al. [22] exposed data about 3 years DFS and 3 years OS of 96.7% and 97.8%, as well 4.5 years DFS 93.5% and 4.5 years OS 94.8% in 115 patients with ECC followed for a mean of 88 months.

Overall, LARVH approach presented a 3 years DFS ranged between 92.4% and 97.1% and a 4.5 years DFS between 86.6% and 96.4%. As well, 3 years OS was enclosed in 96.7% and 100%, and 4.5 years in 88% and 100%. Those results are summarized in Table 2.

In 6 studies, we also evaluated data about DFS in ECC with tumor's maximum diameter > 2 cm. In 3 of them was also feasible to extract data about OS, as shown in Table 2.1.

To consolidate the conceptualization of LARVH as a technique with no tumor spillage, we also analyzed data about local recurrence rate, which oscillated from 0.7% to 25% in the different studies. As well distant recurrence rate was recorded from 0% to 9.5%.

<u>ARTICLE IN PRESS</u>

C. Ronsini, C. Köhler, P. De Franciscis et al.

Table 2

LARVH oncologica	l outcome.
------------------	------------

Name	3Y DFS ^a (%)	3Y OS ^b (%)	4.5Y DFS ^a (%)	4.5Y OS ^b (%)
Chiva 2021	-	_	93.0	-
Fugesi 2021	92.4	100	90.9	100
Hertel 2003	-	-	94.0	98.0
Jackson 2004	-	-	94.0	94.0
Kanao 2019	94.4	100	-	-
Kanno 2019	-	-	96.3	97.2
Köhler 2019	96.8	98.5	95.7	97.6
Kwon 2020	-	-	86.6	88.0
Li 2022	-	-	96.4	96.8
Marchiole 2007	-	-	94.7	95.0
Morgan 2007	92.3	96.7	-	-
Nam 2004	97.1	-	-	-
Park 2002	-	-	96.2	-
Renaud 2000	96.0	98.0	-	-
Sardi 1999	-	-	91.5	91.5
Sharma 2006	94.3	-	-	-
Steed 2004	94.0	-	-	-
Torné 2021	96.7	97.8	93.5	94.8

^a Disease free survival.

^b Overall survival.

Table 2.1			
LARVH oncological	outcome Tum	or >2 cm su	b-analysis

Name	3Y DFS ^a (%)	3Y OS ^b (%)	4.5Y DFS ^a (%)	4.5Y OS ^b (%)
Fugesi 2021	85.0	-	85.0	-
Kanao 2019	89.9	-	-	-
Kanno 2019	-	-	94.0	96.0
Kwon 2020	-	-	79.1	81.5
Li 2022	-	-	91.2	94.1
Marchiole 2007	-	-	87.3	89.9

^a Disease free survival.

^b Overall survival.

No statistical difference was observed in those distributions (*p* 0.220) (Table 3).

3.4. Meta-analysis

The 9 studies comparing LAVRH and ARH were enrolled in the metaanalysis. A total of 1988 patients were analyzed. 714 patients in the LARVH arm were compared with 1274 patients which underwent ARH, exploring DFS outcome. Because of low heterogeneity ($I^2 = 0\%$; p = 0.98), fixed-effects model was applied.

LARVH group showed a non-significant better DFS than ARH (RR 0.80 [95% CI 0.55–1.16] p = 0.24). Fig. 2.

Table 3	
---------	--

Type of recurrence

Name	Loco-regional recurrence rate (%)	Distant recurrence rate (%)	р
Fugesi 2021	2.7	2.7	
Kanao 2019	5.0	2.5	
Kanno 2019	3.7	0.9	
Köhler 2019	2.5	2.5	
Kwon 2020	5.9	9.5	
Li 2022	0.7	3.7	
Marchiole 2007	3.7	2.9	
Morgan 2007	3.3	3.3	
Nam 2004	2.5	0	
Park 2002	1.9	1.9	
Querleu 1993	25.0	0	
Renaud 2000	1.0	3.0	
Sardi 1999	4.3	4.3	
Sharma 2006	5.7	0	
Torné 2021	1.7	4.4	0.220

We performed a sub-analysis for the patients with a tumor's maximum diameter greater than 2 cm. Unfortunately, only 2 of the 9 comparative studies were reporting useful data. 145 patients for the LARVH group and 158 for the ARH group. As well, in this analysis LARVH documented a non-significant better DFS than ARH (554 patients, 273 LARVH and 281 ARH; RR 0.57 [95% CI 0.27–1.23] p = 0.18; $I^2 = 0 p = 0.44$). (Fig. 2.1).

In the end, Fugesi, Jackson, Kanao and Morgan presented comparative data about OS and were included in a second meta-analysis. (RR 0.79 [95% CI 0.23–3.02] p = 0.79; I² = 0 p = 1.00). (Fig. 3).

4. Discussion

LACC trial [4] was a cornerstone in the treatment of ECC. After its publication, a trend reversal was observed in clinical practice with a progressive return to open surgery. Chiva et al. [35] demonstrated how after LACC publication 57% of members of the European Society of Gynaecological Oncology moved from MIS to an open approach in ECC. But scientific evidence is not to be accepted as dogma and should be deeply investigated in their reasons. In 1992 Nezhat et al. [36] firstly described Laparoscopic Radical Hysterectomy. This technique in decades evolved and proved better post-operative outcomes with comparable oncological ones [3,5–7]. MIS approach was also contemplated in guidelines as a valid alternative to ARH [1,2]. But LRH departed from the surgical principles envisioned by Shauta [37] since 1908 and Wertheim [38] since 1911. The clamp of vaginal vault previous colpotomy was a crucial step in the open technique, which can't be routinely replicated in LRH. Moreover, the use of uterine manipulators is a sort of trauma on tumor tissue [23]. As well, at the time of colpotomy, during LRH there is direct communication between tumor and abdominal cavity, and an exposition to CO2 circulation. This was seen in "in vivo" and "in vitro" how could favor tumor spread and its implantation [8,38,39,40]. In this scenario, LARVH represents a MIS technique that avoids this LRH's flaws. The laparoscopic staging, integrated with the vaginal creation of a tumor-adapted covering cuff, combine the advantages of MIS and open approaches. Following this principle, it has been declined in different variations [14,41–43]. Other studies proved the hypothesis that LARVH prevents tumor cells' spillage [44]. For these reasons, we found it useful for clinical practice to investigate its oncological outcomes. As shown in the results, different centers found a DFS and OS comparable with ones of the open arm in the LACC trial [4], which nowadays set the standards, and it represented an unexpectedly favorable prognosis group, superior to survival rates previously published in the scientific literature. With a 3 years DFS of 97.1% and 4.5 years DFS of 96.5%, it remains the highest reported percentage in literature after a randomized controlled trial. But, the results of LARVH studies are more similar to this arm than the MIS arm (3 years DFS of 87.1% and 4.5 years DFS of 86%). The only exception is represented by Kwon et al. [27], which presented a 4.5 years DFS overlapping LACC's MIS group. However, in this comparative study, no difference was seen with ARH's outcomes (5 years DFS 84.4% (95% confidence interval [CI] 79.7-89.1) in the ARH group, and 86.6% (95% CI 82.1-91.1) in the LARVH group; p = 0.467). Moreover, LARVH was shown to be significantly non-inferior to ARH with the noninferiority margin of -7.2 in PFS. This suggests that these results must be attributed to different risk factors than surgical approaches such as routine use of uterine manipulators in this population.

The same consideration may be applied in OS outcome, with a percentage closer to LACC's Abdominal Arm than MIS one (3 years OS 99% and 93.8%, respectively).

Furthermore, direct comparison studies did not show a statistically significant difference between LARVH and ARH, probably due to the very small number of studies. Similarly, however, the data show a trend that does not portend inferiority of the LARVH approach compared to the ARH one.

C. Ronsini, C. Köhler, P. De Franciscis et al.

Gynecologic Oncology xxx (xxxx) xxx

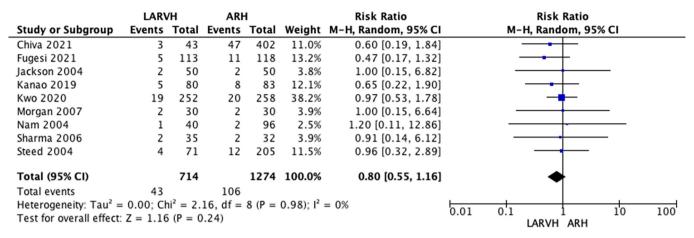


Fig. 2. DFS forest plot.

	LARVH		LARVH A		AR	ARH Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Fixed, 95% CI		IV, Fixed, 95% C	21	
Fugesi 2021	5	105	11	102	56.3%	0.44 [0.16, 1.23]				
Kanao 2019	4	40	7	56	43.7%	0.80 [0.25, 2.55]				
Total (95% CI)		145	1.0	158	100.0%	0.57 [0.27, 1.23]		-		
Total events	9 0 5 7 df	1 (D	18	12 0.0	,					
Heterogeneity: $Ch^2 = 0.57$, $df = 1$ (P = 0.45); $I^2 = 0\%$ Test for overall effect: Z = 1.43 (P = 0.15)				0		0.01 0.1	LARVH ARH	1'0	100	

Fig. 2.1. DFS >2 cm forest plot.

This would support the hypothesis that the LARVH technique could represent a safe alternative to ARH precisely because it lacks all those vulnerabilities highlighted for LRH.

Similarly, a "hot topic" is the treatability of tumors <2 cm [45,46] by the MIS approach Sub-analysis of the LACC Trial proved a different Relative Risk for MIS and Open group (1.6% vs 0.3%, respectively, p = 0.9) and is the only known randomized clinical trial. Anyway, it is necessary to point out that LACC tiral was not powered to confirm the observed results in this subgroup of patients. But numerous retrospective series highlighted a comparable 5 years DFS and risk of death between LRH and ARH, even if in the absence of statistical significance [32–34]. In contrast, the same studies have shown unfavorable oncological outcomes for the MIS approach in cases of tumors >2 cm. For this reason, a sub-analysis of our study was dedicated to patients with tumors >2 cm.

As shown in the results, the studies showed a different range of DFS and OS in this type of patient, which can be difficult compared with ARH expected ones. Only 5 studies were feasible to obtain data about this population and meta-analysis wasn't able to establish a comparison between LARVH and ARH. Moreover, the bigger the tumor is, the more vaginal tissue is demanded to form the vaginal cuff. Even in the absence of data, tumor size may continue to be a limitation to the MIS approach. This limitation, however, could be bypassed by conization preparatory to surgery. This method has been described in the literature and could also show an improved DFS and lower probability of receiving adjuvant treatment of ECC with higher tumor burden [47].

A final consideration is necessary regarding the pattern of relapses. If one leading hypothesis about MIS' worse outcomes come from tumor spillage at the time of colpotomy, we do not expect to see a higher local recurrence rate in a patient treated with LARVH.

These studies have shown very heterogeneous results. Only Kwon, Li, Renaud and Turné showed a higher distance Recurrence rate. On the other hand, some series showed no distant recurrence (Nam, Querleu and Sharma). This difference, which has not shown any

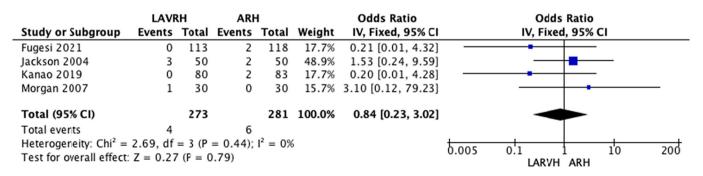


Fig. 3. OS forest plot.

C. Ronsini, C. Köhler, P. De Franciscis et al.

statistical significance, can have its roots in multiple factors. For example, Li's and Kwon's studies, one more, involves the use of a uterine manipulator, which in itself is a manipulation of the tumor mass and can favor its spread [23]. Moreover, the technique described by Li requires the sacrifice of a substantial part of the vagina (placement of a ligature closure at 4 cm from the tumor margin), forcing the operator to an almost total colpotomy and potentially exposing the patient to unnecessary morbidity. As well, the highest Loco-regional RcR was reported in the eldest study with the fewest population (Querleu 1993 25%, 8 patients), and may have suffered from the low diffusion of the technique at that time. Even the most recent review of the literature did not the technique a cignificant difference among a pattern of recurrence between

show a significant difference among a pattern of recurrence between MIS and open approach [48]. The lack of uni- and multivariate analyzes with other risk factors for distant diffusion, such as Grading [49] or LVSI [50], makes this data difficult to interpret. Moreover, direct data from the ARH approach in comparative studies would also be needed to testify the effectiveness of the LARVH approach.

The strength of this study can be found in the rigor of the research, which included everything that has been published regarding LARVH or its declinations. Similarly, the statistical evidence in all oncological outcome studies comparable to ARH respects the objective of the study to prove the non-inferiority of techniques involving non-exposure of the tumor to the abdominal cavity compared with the open approach. On the contrary, weaknesses are represented by the great prevalence of retrospective studies and with the presence of only 9 comparative studies between vaginal cuff creation techniques and ARH and really few data about OS. As well, the high heterogeneity of the studies and the large time range during which they were conducted may limit their clinical impact.

Currently, the issue of the feasibility of MIS in the ECC is of crucial importance and under investigation. Several international RCTs [51,52] are underway to refine our knowledge on the risk mechanisms exercised by this approach.

5. Conclusion

Ultimately, LRVH represents a variation of the much more widespread LRH. It has a long learning curve that has prevented its spread worldwide. Consequently, few surgical schools, often concentrated in specific regions of the world, have published data relating to this technique. This limits the current scientific evidence regarding the technique and undermines this study. Similarly, however, it can be a good starting point to deepen our knowledge of the MIS approach in ECC. Moreover, the trend is shown by our results it can lay the foundation for controlled clinical trials.

Conflict of interest disclosure

The authors made no disclosures. No specific funding was disclosed.

CRediT authorship contribution statement

Carlo Ronsini: Conceptualization, Methodology, Data curation, Writing – original draft. **Christhardt Köhler**: Validation. **Pasquale D.E. Franciscis:** Data curation. **Marco La Verde**: Formal analysis. **Lavinia Mosca:** Data curation. **Maria Cristina Solazzo**: Statistic Analysis. **Nicola Colacurci:** Validation.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ygyno.2022.04.010.

References

[1] D. Cibula, R. Pötter, L. Chiva, F. Planchamp, E. Avall-Lundqvist, D. Cibula, M. Raspollini, The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the management of patients with cervical cancer, Int. J. Gynecol. Cancer 28 (4) (2018) 641-655, https://doi.org/10.1097/IGC.0000000001216.

Gynecologic Oncology xxx (xxxx) xxx

- [2] Cervical Cancer, Version 3.2019, NCCN clinical practice guidelines in oncology, J. Natl. Compr. Cancer Netw. 17 (1) (2019 Jan) 64–84, https://doi.org/10.6004/jnccn. 2019.0001.
- [3] G. Corrado, E. Vizza, F. Legge, et al., Comparison of different surgical approaches for stage IB1 cervical cancer patients: a multi- institution study and a review of the literature, Int. J. Gynecol. Cancer 28 (2018) 1020–1028.
- [4] P.T. Ramirez, M. Frumovitz, R. Pareja, et al., Minimally invasive versus abdominal radical hysterectomy for cervical cancer, N. Engl. J. Med. 379 (2018) 1895–1904.
- [5] J.C. Canton-Romero, R. Anaya-Prado, H.A. Rodriguez-Garcia, et al., Laparoscopic radical hysterectomy with the use of a modified uterine manipulator for the management of stage IB1 cervix cancer, J. Obstet. Gynaecol. 30 (2010) 49–52.
- [6] N.M. Spirtos, S.M. Eisenkop, J.B. Schlaerth, et al., Laparoscopic radical hysterectomy (type III) with aortic and pelvic lymphadenectomy in patients with stage I cervical cancer: surgical morbidity and intermediate follow-up, Am. J. Obstet. Gynecol. 187 (2002) 340–348.
- [7] J.F. Boggess, P.A. Gehrig, L. Cantrell, et al., A case-control study of robot-assisted type III radical hysterectomy with pelvic lymph node dissection compared with open radical hysterectomy, Am. J. Obstet. Gynecol. 199 (2008) 357.e1–357.e7.
- [8] T.W. Kong, S.J. Chang, X. Piao, J. Paek, Y. Lee, E.J. Lee, M. Chun, H.S. Ryu, Patterns of recurrence and survival after abdominal versus laparoscopic/robotic radical hysterectomy in patients with early cervical cancer, J. Obstet. Gynaecol. Res. 42 (1) (2016 Jan) 77–86, https://doi.org/10.1111/jog.12840 Epub 2015 Nov 10. PMID: 26554751.
- [9] C. Köhler, H. Hertel, J. Herrmann, et al., Int. J. Gynecol. Cancer 29 (2019) 845–850.
 [10] D. Moher, Preferred reporting items for systematic reviews and meta-analyses: the
- PRISMA statement, Ann. Intern. Med. 151 (2009) 264, https://doi.org/10.7326/ 0003-4819-151-4-20090 8180-00135.
- [11] A. Chaimani, J.P. Higgins, D. Mavridis, P. Spyridonos, G. Salanti, Graphical tools for network meta-analysis in STATA, PLoS One 8 (2013) e76654, https://doi.org/10. 1371/journal.pone.0076654 (PMID: 24098547).
- [12] D. Kansagara, M. O'Neil, S. Nugent, M. Freeman, A. Low, K. Kondo, C. Elven, B. Zakher, M. Motu'apuaka, R. Paynter, et al., [Table], Quality Assessment Criteria for Observational Studies, Based on the Newcastle-Ottawa Scale, Available at: https://www. ncbi.nlm.nih.gov/books/NBK476448/table/appc.t4/ 2017.
- [13] H. Hertel, C. Köhler, W. Michels, M. Possover, R. Tozzi, A. Schneider, Laparoscopicassisted radical vaginal hysterectomy (LARVH): prospective evaluation of 200 patients with cervical cancer, Gynecol. Oncol. 90 (3) (2003 Sep) 505–511, https:// doi.org/10.1016/s0090-8258(03)00378-0 (PMID: 13678717).
- [14] K. Kanno, M. Andou, S. Yanai, M. Toeda, R. Nimura, F. Ichikawa, Y. Teishikata, T. Shirane, S. Sakate, T. Kihira, Y. Hamasaki, M. Sawada, A. Shirane, Y. Ota, Long-term oncological outcomes of minimally invasive radical hysterectomy for early-stage cervical cancer: a retrospective, single-institutional study in the wake of the LACC trial, J. Obstet. Gynaecol. Res. 45 (12) (2019 Dec) 2425–2434, https://doi.org/10. 1111/jog.14116 Epub 2019 Sep 9. PMID: 31502349.
- [15] C. Kohler, H. Hertel, J. Herrmann, S. Marnitz, P. Mallmann, G. Favero, A. Plaikner, P. Martus, M. Gajda, A. Schneider, Laparoscopic radical hysterectomy with transvaginal closure of vaginal cuff a multicenter analysis, Int. J. Gynecol. Cancer 29 (5) (2019 Jun) 845–850, https://doi.org/10.1136/ijgc-2019-000388 (PMID: 31155516).
- [16] J. Li, X. Ouyang, X. Gong, P. Li, L. Xiao, X. Chang, J. Tang, Survival outcomes of minimally invasive surgery for early-staged cervical cancer: a retrospective study from a single surgeon in a single center, Asian J Surg. 45 (1) (2022 Jan) 320–325, https:// doi.org/10.1016/j.asjsur.2021.05.037 Epub 2021 Jun 17. PMID: 34148755.
- [17] P. Marchiole, M. Benchaib, A. Buenerd, E. Lazlo, D. Dargent, P. Mathevet, Oncological safety of laparoscopic-assisted vaginal radical trachelectomy (LARVT or Dargent's operation): a comparative study with laparoscopic-assisted vaginal radical hysterectomy (LARVH), Gynecol. Oncol. 106 (1) (2007 Jul) 132-141, https://doi.org/10. 1016/j.ygyno.2007.03.009 Epub 2007 May 9. PMID: 17493666.
- [18] C.T. Park, K.T. Lim, H.W. Chung, K.H. Lee, S.J. Seong, J.U. Shim, T.J. Kim, Clinical evaluation of laparoscopic-assisted radical vaginal hysterectomy with pelvic and/or paraaortic lymphadenectomy, J Am Assoc Gynecol Laparosc. 9 (1) (2002 Feb) 49–53, https://doi.org/10.1016/s1074-3804(05)60104-1 (PMID: 11821606).
- D. Querleu, Laparoscopically assisted radical vaginal hysterectomy, Gynecol. Oncol. 51 (2) (1993 Nov) 248–254, https://doi.org/10.1006/gyno.1993.1281 (PMID: 8276302).
- [20] M.C. Renaud, M. Plante, M. Roy, Combined laparoscopic and vaginal radical surgery in cervical cancer, Gynecol. Oncol. 79 (1) (2000 Oct) 59–63, https://doi.org/10.1006/ gyno.2000.5912 (PMID: 11006032).
- [21] J. Sardi, J. Vidaurreta, A. Bermúdez, G. di Paola, Laparoscopically assisted Schauta operation: learning experience at the gynecologic oncology unit, Buenos Aires University Hospital, Gynecol. Oncol. 75 (3) (1999 Dec) 361–365, https://doi.org/10.1006/ gyno.1999.5588 (PMID: 10600290).
- [22] A. Torné, J. Pahisa, J. Ordi, P. Fusté, B. Díaz-Feijóo, A. Glickman, P. Paredes, A. Rovirosa, L. Gaba, A. Saco, C. Nicolau, N. Carreras, N. Agustí, S. Vidal-Sicart, B. Gil-Ibáñez, M. Del Pino, Oncological results of laparoscopically assisted radical vaginal hysterectomy in early-stage cervical Cancer: should we really abandon minimally invasive surgery? Cancers (Basel). 13 (4) (2021 Feb 17) 846, https://doi.org/10. 3390/cancers13040846. PMID: 33671382; PMCID: PMC7923118.
- [23] L. Chiva, V. Zanagnolo, D. Querleu, N. Martin-Calvo, J. Arévalo-Serrano, M.E. Căpîlna, A. Fagotti, A. Kucukmetin, C. Mom, G. Chakalova, S. Aliyev, M. Malzoni, F. Narducci, O. Arencibia, F. Raspagliesi, T. Toptas, D. Cibula, D. Kaidarova, M.M. Meydanli, M.

C. Ronsini, C. Köhler, P. De Franciscis et al.

Tavares, D. Golub, A.M. Perrone, R. Poka, D. Tsolakidis, G. Vujić, M.A. Jedryka, P.L.M. Zusterzeel, J.J. Beltman, F. Goffin, D. Haidopoulos, H. Haller, R. Jach, I. Yezhova, I. Berlev, M. Bernardino, R. Bharathan, M. Lanner, M.M. Maenpaa, V. Sukhin, J.G. Feron, R. Fruscio, K. Kukk, J. Ponce, J.A. Minguez, D. Vázquez-Vicente, T. Castellanos, E. Chacon, J.L. Alcazar, SUCCOR study group. SUCCOR study: an international European cohort observational study comparing minimally invasive surgery versus open abdominal radical hysterectomy in patients with stage IB1 cervical cancer, Int. J. Gynecol. Cancer 30 (9) (2020 Sep) 1269–1277, https://doi.org/10.1136/ijgc-2020-001506 (Epub 2020 Aug 11. PMID: 32788262).

- [24] A. Fusegi, H. Kanao, N. Ishizuka, H. Nomura, Y. Tanaka, M. Omi, Y. Aoki, T. Kurita, M. Yunokawa, K. Omatsu, K. Matsuo, N. Miyasaka, Oncologic outcomes of laparoscopic radical hysterectomy using the no-look no-touch technique for early stage cervical cancer: a propensity score-adjusted analysis, Cancers (Basel) 13 (23) (2021 Dec 3) 6097, https://doi.org/10.3390/cancers13236097 PMID: 34885205; PMCID: PMC8657300.
- [25] K.S. Jackson, N. Das, R. Naik, A.D. Lopes, K.A. Godfrey, M.H. Hatem, J.M. Monaghan, Laparoscopically assisted radical vaginal hysterectomy vs. radical abdominal hysterectomy for cervical cancer: a match controlled study, Gynecol. Oncol. 95 (3) (2004 Dec) 655–661, https://doi.org/10.1016/j.ygyno.2004.07.055 (PMID: 15581978).
 [26] H. Kanao, K. Matsuo, Y. Aoki, T. Tanigawa, H. Nomura, S. Okamoto, N. Takeshima,
- [26] H. Kanao, K. Matsuo, Y. Aoki, T. Tanigawa, H. Nomura, S. Okamoto, N. Takeshima, Feasibility and outcome of total laparoscopic radical hysterectomy with no-look no-touch technique for FIGO IB1 cervical cancer, J. Gynecol. Oncol. 30 (3) (2019 May) e71, https://doi.org/10.3802/jgo.2019.30.e71. PMID: 30887768; PMCID: PMC6424854.
- [27] B.S. Kwon, H.J. Roh, S. Lee, J. Yang, Y.J. Song, S.H. Lee, K.H. Kim, D.S. Suh, Comparison of long-term survival of total abdominal radical hysterectomy and laparoscopyassisted radical vaginal hysterectomy in patients with early cervical cancer: Korean multicenter, retrospective analysis, Gynecol. Oncol. 159 (3) (2020 Dec) 642–648, https://doi.org/10.1016/j.ygyno.2020.09.035 Epub 2020 Oct 9. PMID: 33041070.
- [28] D.J. Morgan, D.C. Hunter, G. McCracken, H.R. McClelland, J.H. Price, S.P. Dobbs, Is laparoscopically assisted radical vaginal hysterectomy for cervical carcinoma safe? A case control study with follow up, BJOG 114 (5) (2007 May) 537–542, https://doi. org/10.1111/j.1471-0528.2007.01291.x, Epub 2007 Mar 13. Erratum in: BJOG. 2007 Jul;114(7):914 17355358.
- [29] J.H. Nam, J.H. Kim, D.Y. Kim, M.K. Kim, H.J. Yoo, Y.M. Kim, Y.T. Kim, J.E. Mok, Comparative study of laparoscopico-vaginal radical hysterectomy and abdominal radical hysterectomy in patients with early cervical cancer, Gynecol. Oncol. 92 (1) (2004 Jan) 277–283, https://doi.org/10.1016/j.ygyno.2003.09.003 (PMID: 14751171).
- [30] R. Sharma, J. Bailey, R. Anderson, J. Murdoch, Laparoscopically assisted radical vaginal hysterectomy (Coelio-Schauta): a comparison with open Wertheim/Meigs hysterectomy, Int. J. Gynecol. Cancer 16 (5) (2006 Sep-Oct) 1927–1932, https://doi.org/ 10.1111/j.1525-1438.2006.00661.x (PMID: 17009993).
- [31] H. Steed, B. Rosen, J. Murphy, S. Laframboise, D. De Petrillo, A. Covens, A comparison of laparascopic-assisted radical vaginal hysterectomy and radical abdominal hysterectomy in the treatment of cervical cancer, Gynecol. Oncol. 93 (3) (2004 Jun) 588–593, https://doi.org/10.1016/j.ygyno.2004.04.003 (PMID: 15196849).
- [32] D. Dargent, A new future for Schautas's operation through presurgical retroperitoneal pelviscopy, Eur. J. Gynaecol. Oncol. 8 (1987) 292–296.
- [33] D. Querleu, C.P. Morrow, Classification of radical hysterec- tomy, Lancet Oncol. 9 (2008) 297–303.
- [34] M.S. Piver, F. Rutledge, J.P. Smith, Five classes of extended hysterectomy for women with cervical cancer, Obstet. Gynecol. 44 (2) (1974 Aug) 265–272 (PMID: 4417035).
- [35] L. Chiva, D. Cibula, D. Querleu, Minimally invasive or abdominal radical hysterectomy for cervical Cancer, N. Engl. J. Med. 380 (8) (2019 Feb 21) 793-794.
- [36] C.R. Nezhat, M.O. Burrell, F.R. Nezhat, B.B. Benigno, C.E. Welander, Laparoscopic radical hysterectomy with paraaortic and pelvic node dissection, Am. J. Obstet. Gynecol. 166 (3) (1992 Mar) 864–865, https://doi.org/10.1016/0002-9378(92)91351-a (PMID: 1532291).
- [37] F. Schauta, Die erweiterte vaginale Totalexstirpation des uterus bei Kollumkarzinom, Josef Safár, Wien Leipzig, 1908.
- [38] E. Wertheim, Die erweiterte abdominale operation bei carcinoma colli uteri (auf Grund von 500 Fällen), Urban und Schwarzenberg, Berlin, Wien, 1911.
- [39] J. Volz, S. Köster, Z. Spacek, N. Paweletz, The influence of pneumoperitoneum used in laparoscopic surgery on an intraabdominal tumor growth, Cancer 86 (5) (1999 Sep 1) 770–774 (PMID: 10463974).

- [40] F. Lin, L. Pan, L. Li, D. Li, L. Mo, Effects of a simulated CO2 pneumoperitoneum environment on the proliferation, apoptosis, and metastasis of cervical cancer cells in vitro, Med. Sci. Monit. 20 (2014 Dec 1) 2497–2503, https://doi.org/10.12659/ MSM.891179. PMID: 25436974; PMCID: PMC4260668.
- [41] I. Deura, R. Kanamori, Y. Nagasawa, S. Kuji, T. Ohara, A. Tozawa, M. Shimada, N. Suzuki, A simple technique of vaginal cuff closure to prevent tumor cell spillage in laparoscopic radical hysterectomy for uterine cervical cancer, Asian J Endosc Surg. 14 (3) (2021 Jul) 665–668, https://doi.org/10.1111/ases.12915 Epub 2021 Jan 3. PMID: 33393218.
- [42] M. Possover, N. Krause, R. Kühne-Heid, et al., Laparoscopic assistance for extended radicality of radical vaginal hysterectomy: description of a technique, Gynecol. Oncol. 70 (1998) 94–99.
- [43] T. Tanaka, S. Miyamoto, S. Terada, et al., Intraperitoneal cytology after laparoscopic radical hysterectomy with vaginal closure without the use of a manipulator for cervical cancer: a retrospec- tive observational study, Cancer Manag. Res. 11 (2019) 7015–7020.
- [44] M. Kim, Y.B. Kim, J.W. Kim, After the laparoscopic approach to cervical Cancer (LACC) trial: Korean Society of Gynecologic Oncology (KSGO) survey, J. Gynecol. Oncol. 30 (5) (2019 Sep) e108, https://doi.org/10.3802/jgo.2019.30.e108. PMID: 31328470; PMCID: PMC6658594.
- [45] A. Melamed, D.J. Margul, L. Chen, N.L. Keating, M.G. Del Carmen, J. Yang, B.L. Seagle, A. Alexander, E.L. Barber, L.W. Rice, J.D. Wright, M. Kocherginsky, S. Shahabi, J.A. Rauh-Hain, Survival after minimally invasive radical hysterectomy for early-stage cervical cancer, N. Engl. J. Med. 379 (20) (2018 Nov 15) 1905–1914, https://doi. org/10.1056/NEJMoa1804923 Epub 2018 Oct 31. PMID: 30379613; PMCID: PMC6464372.
- [46] J.H. Nam, J.Y. Park, D.Y. Kim, J.H. Kim, Y.M. Kim, Y.T. Kim, Laparoscopic versus open radical hysterectomy in early-stage cervical cancer: long-term survival outcomes in a matched cohort study, Ann. Oncol. 23 (4) (2012 Apr) 903–911, https://doi.org/10. 1093/annonc/mdr360 Epub 2011 Aug 12. PMID: 21841155.
- [47] N. Bizzarri, L. Pedone Anchora, A. Kucukmetin, N. Ratnavelu, P. Korompelis, V. Carbone, C. Fedele, M. Bruno, G. Vizzielli, V. Gallotta, R. De Vincenzo, V. Chiantera, A. Fagotti, F. Fanfani, G. Ferrandina, G. Scambia, Protective role of conization before radical hysterectomy in early-stage cervical cancer: a propensity-score matching study, Ann. Surg. Oncol. 28 (7) (2021 Jul) 3585–3594, https://doi.org/10.1245/s10434-021-09695-4 Epub 2021 Feb 23. PMID: 33620615.
- [48] N. Manzour, J.M. Núñez-Cordoba, L. Chiva, E. Chacón, F. Boria, J. Vara-García, Y.P. Rodriguez-Velandia, J.A. Minguez, J.L. Alcazar, Pattern of relapse in patients with stage IB1 cervical cancer after radical hysterectomy as primary treatment. Minimally invasive surgery vs. open approach. Systematic review and meta-analysis, Gynecol. Oncol. 164 (2) (2022 Feb) 455–460, https://doi.org/10.1016/j.ygyno. 2021.11.018, Epub 2021 Nov 27 34848071.
- [49] T. Kamura, et al., Multivariate analysis of the histopathologic prognostic factors of cervical cancer in patients undergoing radical hysterectomy, Cancer 69 (1) (1992 Jan 1) 181–186 PMID: 1727662, doi:10.1002/1097-0142(19920101)69:1<181:: aid-cncr2820690130>3.0.co;2-b.
- [50] C. Ronsini, L.P. Anchora, S. Restaino, C. Fedele, D. Arciuolo, E. Teodorico, N. Bizzarri, G.F. Zannoni, G. Ferrandina, G. Scambia, F. Fanfani, The role of semiquantitative evaluation of lympho-vascular space invasion in early stage cervical cancer patients, Gynecol. Oncol. 162 (2) (2021 Aug) 299–307, https://doi.org/10.1016/j.ygyno. 2021.06.002 Epub 2021 Jun 9. PMID: 34116834.
- [51] H. Falconer, K. Palsdottir, K. Stalberg, P. Dahm-Kähler, U. Ottander, E.S. Lundin, L. Wijk, R. Kimmig, P.T. Jensen, A.G. Zahl Eriksson, J. Mäenpää, J. Persson, S. Salehi, Robot-assisted approach to cervical cancer (RACC): an international multi-center, open-label randomized controlled trial, Int. J. Gynecol. Cancer 29 (6) (2019 Jul) 1072–1076, https://doi.org/10.1136/ijgc-2019-000558 Epub 2019 Jun 14. PMID: 31203203.
- [52] X. Chao, L. Li, M. Wu, et al., Efficacy of different surgical approaches in the clinical and survival outcomes of patients with early-stage cervical cancer: protocol of a phase III multicentre randomised controlled trial in China, BMJ Open 9 (2019), e029055.

Gynecologic Oncology xxx (xxxx) xxx