34 research outputs found

    Rad51 Nucleoprotein Filament Disassembly Captured Using Fluorescent \u3cem\u3ePlasmodium falciparum\u3c/em\u3e SSB as a Reporter for Single-Stranded DNA

    Get PDF
    Single-stranded DNA binding (SSB) proteins coordinate DNA replication, repair, and recombination and are critical for maintaining genomic integrity. SSB binds to single-stranded DNA (ssDNA) rapidly and with very high affinity making it a useful molecular tool to detect free ssDNA in solution. We have labeled SSB from Plasmodium falciparum (Pf-SSB) with the MDCC (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)-carbonyl)coumarin) fluorophore which yields a four-fold increase in fluorescence upon binding to ssDNA. Pf-SSBMDCC binding to DNA is unaffected by NaCl or Mg2+ concentration and does not display salt-dependent changes in DNA binding modes or cooperative binding on long DNA substrates. These features are unique to Pf-SSB, making it an ideal tool to probe the presence of free ssDNA in any biochemical reaction. Using this Pf-SSBMDCC probe as a sensor for free ssDNA, we have investigated the clearing of preformed yeast Rad51 nucleoprotein filaments by the Srs2 helicase during HR. Our studies provide a rate for the disassembly of the Rad51 filament by full length Srs2 on long ssDNA substrates. Mutations in the conserved 2B domain in the homologous bacterial UvrD, Rep and PcrA helicases show an enhancement of DNA unwinding activity, but similar mutations in Srs2 do not affect its DNA unwinding or Rad51 clearing properties. These studies showcase the utility of the Pf-SSB probe in mechanistic investigation of enzymes that function in DNA metabolism

    Ras Transformation of RIE-1 Cells Activates Cap-Independent Translation of Ornithine Decarboxylase: Regulation by the Raf/MEK/ERK and Phosphatidylinositol 3-Kinase Pathways

    Get PDF
    Ornithine decarboxylase (ODC) is the first and generally rate-limiting enzyme in polyamine biosynthesis. Deregulation of ODC is critical for oncogenic growth, and ODC is a target of Ras. These experiments examine translational regulation of ODC in RIE-1 cells, comparing untransformed cells with those transformed by an activated Ras12V mutant. Analysis of the ODC 5′ untranslated region (5′UTR) revealed four splice variants with the presence or absence of two intronic sequences. All four 5′UTR species were found in both cell lines; however, variants containing intronic sequences were more abundant in Ras-transformed cells. All splice variants support internal ribosome entry site (IRES)–mediated translation, and IRES activity is markedly elevated in cells transformed by Ras. Inhibition of Ras effector targets indicated that the ODC IRES element is regulated by the phosphorylation status of the translation factor eIF4E. Dephosphorylation of eIF4E by inhibition of mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK) or the eIF4E kinase Mnk1/2 increases ODC IRES activity in both cell lines. When both the Raf/MEK/ERK and phosphatidylinositol 3-kinase/mammalian target of rapamycin pathways are inhibited in normal cells, ODC IRES activity is very low and cells arrest in G1. When these pathways are inhibited in Ras-transformed cells, cell cycle arrest does not occur and ODC IRES activity increases, helping to maintain high ODC activity

    Context-Dependent Remodeling of Rad51–DNA Complexes by Srs2 Is Mediated by a Specific Protein–Protein Interaction

    Get PDF
    The yeast Srs2 helicase removes Rad51 nucleoprotein filaments from single-stranded DNA (ssDNA), preventing DNA strand invasion and exchange by homologous recombination. This activity requires a physical interaction between Srs2 and Rad51, which stimulates ATP turnover in the Rad51 nucleoprotein filament and causes dissociation of Rad51 from ssDNA. Srs2 also possesses a DNA unwinding activity and here we show that assembly of more than one Srs2 molecule on the 3′ ssDNA overhang is required to initiate DNA unwinding. When Rad51 is bound on the double-stranded DNA, its interaction with Srs2 blocks the helicase (DNA unwinding) activity of Srs2. Thus, in different DNA contexts, the physical interaction of Rad51 with Srs2 can either stimulate or inhibit the remodeling functions of Srs2, providing a means for tailoring DNA strand exchange activities to enhance the fidelity of recombination

    Destabilization of The Ornithine Decarboxylase mRNA Transcript by the RNA-Binding Protein Tristetraprolin

    Get PDF
    Ornithine decarboxylase (ODC) is the first and usually rate-limiting enzyme in the polyamine biosynthetic pathway. In a normal physiological state, ODC is tightly regulated. However, during neoplastic transformation, ODC expression becomes upregulated. The studies described here show that the ODC mRNA transcript is destabilized by the RNA-binding protein tristetraprolin (TTP). We show that TTP is able to bind to the ODC mRNA transcript in both non-transformed RIE-1 cells and transformed Ras12V cells. Moreover, using mouse embryonic fibroblast cell lines that are devoid of a functional TTP protein, we demonstrate that in the absence of TTP both ODC mRNA stability and ODC enzyme activity increase when compared to wild-type cells. Finally, we show that the ODC 3′ untranslated region contains cis acting destabilizing elements that are affected by, but not solely dependent on, TTP expression. Together, these data support the hypothesis that TTP plays a role in the post-transcriptional regulation of the ODC mRNA transcript

    Monitoring Replication Protein A (RPA) Dynamics in Homologous Recombination Through Site-specific Incorporation of Non-canonical Amino Acids

    Get PDF
    An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance

    Tumor Suppressor Activity of ODC Antizyme in MEK-driven Skin Tumorigenesis

    Get PDF
    To test the hypothesis that suppression of ornithine decarboxylase (ODC) activity blocks the promotion of target cells in the outer root sheath of the hair follicle initiated by Raf/MEK/ERK activation, we crossed mice overexpressing an activated MEK mutant in the skin (K14-MEK mice) with two transgenic lines overexpressing antizyme (AZ), which binds to ODC and targets it for degradation. K14-MEK mice develop spontaneous skin tumors without initiation or promotion. These mice on the ICR background were crossed with K5-AZ and K6-AZ mice on both the carcinogenesis-resistant C57BL/6 background and the sensitive DBA/2 background. Expression of AZ driven by either the K5 or K6 promoter along with K14-MEK dramatically delayed tumor incidence and reduced tumor multiplicity on both backgrounds compared with littermates expressing the MEK transgene alone. The effect was most remarkable in the MEK/K6-AZ mice from the ICR/D2 F1 cross, where double transgenic mice averaged less than one tumor per mouse for more than 8 weeks, while K14-MEK mice averaged over 13 tumors per mouse at this age. Putrescine was decreased in MEK/AZ tumors, while spermidine and spermine levels were unaffected, suggesting that the primary role played by AZ in this system is to inhibit putrescine accumulation. MEK/AZ tumors did not show evidence of apoptosis, but there was a 15–20% decrease in S-phase cells and a 40–60% decrease in mitotic cells in MEK/AZ tumors. These results indicate that the principal effect of AZ may be to slow cell growth primarily by increasing G2/M transit time

    Ornithine Decarboxylase mRNA is Stabilized in an mTORC1-dependent Manner in Ras-transformed Cells

    Get PDF
    Upon Ras activation, ODC (ornithine decarboxylase) is markedly induced, and numerous studies suggest that ODC expression is controlled by Ras effector pathways. ODC is therefore a potential target in the treatment and prevention of Ras-driven tumours. In the present study we compared ODC mRNA translation profiles and stability in normal and Ras12V-transformed RIE-1 (rat intestinal epithelial) cells. While translation initiation of ODC increased modestly in Ras12V cells, ODC mRNA was stabilized 8-fold. Treatment with the specific mTORC1 [mTOR (mammalian target of rapamycin) complex 1] inhibitor rapamycin or siRNA (small interfering RNA) knockdown of mTOR destabilized the ODC mRNA, but rapamycin had only a minor effect on ODC translation initiation. Inhibition of mTORC1 also reduced the association of the mRNA-binding protein HuR with the ODC transcript. We have shown previously that HuR binding to the ODC 3′UTR (untranslated region) results in significant stabilization of the ODC mRNA, which contains several AU-rich regions within its 3′UTR that may act as regulatory sequences. Analysis of ODC 3′UTR deletion constructs suggests that cis-acting elements between base 1969 and base 2141 of the ODC mRNA act to stabilize the ODC transcript. These experiments thus define a novel mechanism of ODC synthesis control. Regulation of ODC mRNA decay could be an important means of limiting polyamine accumulation and subsequent tumour development

    Contributions Made by CDC25 Phosphatases to Proliferation of Intestinal Epithelial Stem and Progenitor Cells

    Get PDF
    The CDC25 protein phosphatases drive cell cycle advancement by activating cyclin-dependent protein kinases (CDKs). Humans and mice encode three family members denoted CDC25A, -B and -C and genes encoding these family members can be disrupted individually with minimal phenotypic consequences in adult mice. However, adult mice globally deleted for all three phosphatases die within one week after Cdc25 disruption. A severe loss of absorptive villi due to a failure of crypt epithelial cells to proliferate was observed in the small intestines of these mice. Because the Cdc25s were globally deleted, the small intestinal phenotype and loss of animal viability could not be solely attributed to an intrinsic defect in the inability of small intestinal stem and progenitor cells to divide. Here, we report the consequences of deleting different combinations of Cdc25s specifically in intestinal epithelial cells. The phenotypes arising in these mice were then compared with those arising in mice globally deleted for the Cdc25s and in mice treated with irinotecan, a chemotherapeutic agent commonly used to treat colorectal cancer. We report that the phenotypes arising in mice globally deleted for the Cdc25s are due to the failure of small intestinal stem and progenitor cells to proliferate and that blocking cell division by inhibiting the cell cycle engine (through Cdc25 loss) versus by inducing DNA damage (via irinotecan) provokes a markedly different response of small intestinal epithelial cells. Finally, we demonstrate that CDC25A and CDC25B but not CDC25C compensate for each other to maintain the proliferative capacity of intestinal epithelial stem and progenitor cells

    Type I Interferons Link Viral Infection to Enhanced Epithelial Turnover and Repair

    Get PDF
    The host immune system functions constantly to maintain chronic commensal and pathogenic organisms in check. The consequences of these immune responses on host physiology are as yet unexplored, and may have long-term implications in health and disease. We show that chronic viral infection increases epithelial turnover in multiple tissues, and the antiviral cytokines type I interferons (IFNs) mediate this response. Using a murine model with persistently elevated type I IFNs in the absence of exogenous viral infection, the Irgm1−/− mouse, we demonstrate that type I IFNs act through nonepithelial cells, including macrophages, to promote increased epithelial turnover and wound repair. Downstream of type I IFN signaling, the highly related IFN-stimulated genes Apolipoprotein L9a and b activate epithelial proliferation through ERK activation. Our findings demonstrate that the host immune response to chronic viral infection has systemic effects on epithelial turnover through a myeloid-epithelial circuit
    corecore