5,983 research outputs found

    Comptomization and radiation spectra of X-ray sources. Calculation of the Monte Carlo method

    Get PDF
    The results of computations of the Comptomization of low frequency radiation in weakly relativistic plasma are presented. The influence of photoabsorption by iron ions on a hard X-ray spectrum is considered

    Derivative based global sensitivity measures

    Full text link
    The method of derivative based global sensitivity measures (DGSM) has recently become popular among practitioners. It has a strong link with the Morris screening method and Sobol' sensitivity indices and has several advantages over them. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is generally much lower than that for estimation of Sobol' sensitivity indices. This paper presents a survey of recent advances in DGSM concerning lower and upper bounds on the values of Sobol' total sensitivity indices S_itotS\_{i}^{tot}. Using these bounds it is possible in most cases to get a good practical estimation of the values of S_itotS\_{i}^{tot} . Several examples are used to illustrate an application of DGSM

    Microbial single-cell omics: the crux of the matter

    Get PDF
    Single-cell genomics and transcriptomics can provide reliable context for assembled genome fragments and gene expression activity on the level of individual prokaryotic genomes. These methods are rapidly emerging as an essential complement to cultivation-based, metagenomics, metatranscriptomics, and microbial community-focused research approaches by allowing direct access to information from individual microorganisms, even from deep-branching phylogenetic groups that currently lack cultured representatives. Their integration and binning with environmental ‘omics data already provides unprecedented insights into microbial diversity and metabolic potential, enabling us to provide information on individual organisms and the structure and dynamics of natural microbial populations in complex environments. This review highlights the pitfalls and recent advances in the field of single-cell omics and its importance in microbiological and biotechnological studies

    Effect of electrolysis regimes on the structure and properties of coatings on aluminum alloys formed by anode-cathode microarc oxidation

    Get PDF
    Наведено результати дослідження фазового складу і властивостей МДО-покриттів на алюмінієвих сплавах. Покриття були одержані в лужно-селікатному електроліті на змінному сінусоідальному струмі і в імпульсному режимі струму. Показано, що підвищена щільність мікророзрядів при імпульсної технології збільшує сумарну енергію, що виділяється в них. Це обумовлює підвищення швидкості зростання оксидного покриття і ймовірність утворення α-Al₂O₃ фази. Одержані при мікроплазмове оксидуванні в імпульсному струмовому режимі покриття мають високу твердість і електричну міцніст

    Sensitivity analysis methods for uncertainty budgeting in system design

    Get PDF
    Quantification and management of uncertainty are critical in the design of engineering systems, especially in the early stages of conceptual design. This paper presents an approach to defining budgets on the acceptable levels of uncertainty in design quantities of interest, such as the allowable risk in not meeting a critical design constraint and the allowable deviation in a system performance metric. A sensitivity-based method analyzes the effects of design decisions on satisfying those budgets, and a multi-objective optimization formulation permits the designer to explore the tradespace of uncertainty reduction activities while also accounting for a cost budget. For models that are computationally costly to evaluate, a surrogate modeling approach based on high dimensional model representation (HDMR) achieves efficient computation of the sensitivities. An example problem in aircraft conceptual design illustrates the approach.United States. National Aeronautics and Space Administration. Leading Edge Aeronautics Research Program (Grant NNX14AC73A)United States. Department of Energy. Applied Mathematics Program (Award DE-FG02-08ER2585)United States. Department of Energy. Applied Mathematics Program (Award DE-SC0009297

    Derivative based global sensitivity measures

    Get PDF
    International audienceThe method of derivative based global sensitivity measures (DGSM) has recently become popular among practitioners. It has a strong link with the Morris screening method and Sobol' sensitivity indices and has several advantages over them. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is generally much lower than that for estimation of Sobol' sensitivity indices. This paper presents a survey of recent advances in DGSM concerning lower and upper bounds on the values of Sobol' total sensitivity indices SitotS_{i}^{tot}. Using these bounds it is possible in most cases to get a good practical estimation of the values of SitotS_{i}^{tot} . Several examples are used to illustrate an application of DGSM

    Quantum dynamics in canonical and micro-canonical ensembles. Part I. Anderson localization of electrons

    Full text link
    The new numerical approach for consideration of quantum dynamics and calculations of the average values of quantum operators and time correlation functions in the Wigner representation of quantum statistical mechanics has been developed. The time correlation functions have been presented in the form of the integral of the Weyl's symbol of considered operators and the Fourier transform of the product of matrix elements of the dynamic propagators. For the last function the integral Wigner- Liouville's type equation has been derived. The numerical procedure for solving this equation combining both molecular dynamics and Monte Carlo methods has been developed. For electrons in disordered systems of scatterers the numerical results have been obtained for series of the average values of the quantum operators including position and momentum dispersions, average energy, energy distribution function as well as for the frequency dependencies of tensor of electron conductivity and permittivity according to quantum Kubo formula. Zero or very small value of static conductivity have been considered as the manifestation of Anderson localization of electrons in 1D case. Independent evidence of Anderson localization comes from the behaviour of the calculated time dependence of position dispersion.Comment: 8 pages, 10 figure

    Computer simulation of crystallization kinetics with non-Poisson distributed nuclei

    Full text link
    The influence of non-uniform distribution of nuclei on crystallization kinetics of amorphous materials is investigated. This case cannot be described by the well-known Johnson-Mehl-Avrami (JMA) equation, which is only valid under the assumption of a spatially homogeneous nucleation probability. The results of computer simulations of crystallization kinetics with nuclei distributed according to a cluster and a hardcore distribution are compared with JMA kinetics. The effects of the different distributions on the so-called Avrami exponent nn are shown. Furthermore, we calculate the small-angle scattering curves of the simulated structures which can be used to distinguish experimentally between the three nucleation models under consideration.Comment: 14 pages including 7 postscript figures, uses epsf.sty and ioplppt.st

    Structural engineering of NbN/Cu multilayer coatings by changing the thickness of the layers and the magnitude of the bias potential during deposition

    Get PDF
    To determine the patterns of structural engineering of vacuum-arc coatings based on niobium nitride in the NbN/Cu multilayer composition, the effect of layer thickness and bias potential on the structural-phase state and physico-mechanical characteristics of vacuum-arc coatings was studie
    corecore