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Derivative based global sensitivity

measures

Abstract

The method of derivative based global sensitivity measures (DGSM) has recently be-

come popular among practitioners. It has a strong link with the Morris screening

method and Sobol’ sensitivity indices and has several advantages over them. DGSM

are very easy to implement and evaluate numerically. The computational time required

for numerical evaluation of DGSM is generally much lower than that for estimation of

Sobol’ sensitivity indices. This paper presents a survey of recent advances in DGSM

concerning lower and upper bounds on the values of Sobol’ total sensitivity indices

Stot
i . Using these bounds it is possible in most cases to get a good practical estimation

of the values of Stot
i . Several examples are used to illustrate an application of DGSM.
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Introduction

Global sensitivity analysis (SA) offers a comprehensive approach to the model analysis.

Unlike local SA, global SA methods evaluate the effect of a factor while all other factors

are varied as well and thus they account for interactions between variables and do not

depend on the choice of a nominal point. Reviews of different global SA methods

can be found in Saltelli et al [30] and Sobol and Kucherenko [37]. The method of

global sensitivity indices suggested by Sobol [33, 34], and then further developed by

Homma and Saltelli [11] is one of the most efficient and popular global SA techniques.

It belongs to the class of variance-based methods. These methods provide information

on the importance of different subsets of input variables to the output variance. There

are two types of Sobol’ sensitivity indices: the main effect indices, which estimate the

individual contribution of each input parameter to the output variance, and the total

sensitivity indices, which measure the total contribution of a single input factor or

a group of inputs. The total sensitivity indices are used to identify non-important

variables which can then be fixed at their nominal values to reduce model complexity.

This approach is known as “factors’ fixing setting” [30]. For high-dimensional models

the direct application of variance-based global SA measures can be extremely time-

consuming and impractical.

A number of alternative SA techniques have been proposed. One of them is the

screening method by Morris [21]. It can be regarded as global as the final measure is

obtained by averaging local measures (the elementary effects). This method is consid-

erably cheaper than the variance based methods in terms of computational time. The

Morris method can be used for identifying unimportant variables. However, the Morris
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method has two main drawbacks. Firstly, it uses random sampling of points from the

fixed grid (levels) for averaging elementary effects which are calculated as finite dif-

ferences with the increment delta comparable with the range of uncertainty. For this

reason it can not correctly account for the effects with characteristic dimensions much

less than delta. Secondly, it lacks the ability of the Sobol’ method to provide infor-

mation about main effects (contribution of individual variables to uncertainty) and it

can’t distinguish between low and high order interactions.

This paper presents a survey of derivative based global sensitivity measures

(DGSM) and their link with Sobol’ sensitivity indices. DGSM are based on averaging

local derivatives using Monte Carlo or Quasi Monte Carlo sampling methods. This

technique is much more accurate than the Morris method as the elementary effects are

evaluated as strict local derivatives with small increments compared to the variable

uncertainty ranges. Local derivatives are evaluated at randomly or quasi randomly

selected points in the whole range of uncertainty and not at the points from a fixed

grid.

The so-called alternative global sensitivity estimator defined as a normalized

integral of partial derivatives was firstly introduced by Sobol and Gershman [36].

Kucherenko et al [17] introduced some other DGSM and coined the acronym DGSM.

They showed that DGSM can be seen as the generalization of the Morris method [21].

Kucherenko et al [17] also established empirically the link between DGSM and Sobol’

sensitivity indices. They showed that the computational cost of numerical evaluation

of DGSM can be much lower than that for estimation of Sobol’ sensitivity indices.

Sobol and Kucherenko [38] proved theoretically that, in the cases of uniformly

and normally distributed input variables, there is a link between DGSM and the Sobol’

total sensitivity index Stot
i for the same input. They showed that DGSM can be used

as an upper bound on total sensitivity index Stot
i . Small values of DGSM imply small
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Stot
i , and hence unessential factors xi. However, ranking influential factors using DGSM

can be similar to that based on Stot
i only for the case of linear and quasi-linear models.

For highly non-linear models two rankings can be very different. They also introduced

modified DGSM which can be used for both a single input and groups of inputs [39].

From DGSM, Kucherenko and Song [16] have also derived lower bounds on total sensi-

tivity index. Lamboni et al [19] extended results of Sobol’ and Kucherenko for models

with input variables belonging to the general class of continuous probability distribu-

tions. In the same framework, Roustant et al [28] have defined crossed-DGSM, based

on second-order derivatives of model output, in order to bound the total Sobol’ indices

of an interaction between two inputs.

All these DGSM measures can be applied for problems with a high number of

input variables to reduce the computational time. Indeed, the numerical efficiency of

the DGSM method can be improved by using the automatic differentiation algorithm

for calculation DGSM as was shown in Kiparissides et al [15]. However, the number

of required function evaluations still remains to be proportional to the number of

inputs. This dependence can be greatly reduced using an approach based on algorithmic

differentiation in the adjoint or reverse mode [9] ( Variational Methods). It allows

estimating all derivatives at a cost at most 4-6 times of that for evaluating the original

function [13].

This paper is organised as follows: the Morris method and DGSM are firstly

described in the following section. Sobol’ global sensitivity indices and useful relation-

ships are then introduced. Therefore, DGSM-based lower and uppers bounds on total

Sobol’ sensitivity indices for uniformly and normally distributed random variables are

presented, followed by DGSM for groups of variables and their link with total Sobol’

sensitivity indices. Another section presents the upper bounds results in the general

case of variables with continuous probability distributions. Then, computational costs
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are considered, followed by some test cases which illustrate an application of DGSM

and their links with total Sobol’ sensitivity indices. Finally, conclusions are presented

in the last section.

From Morris method to DGSM

Basics of the Morris method

The Morris method is traditionally used as a screening method for problems with a

high number of variables for which function evaluations can be CPU-time consuming

(see Design of Experiments for Screening). It is composed of individually randomized

’one-factor-at-a-time’ (OAT) experiments. Each input factor may assume a discrete

number of values, called levels, which are chosen within the factor range of variation.

The sensitivity measures proposed in the original work of Morris [21] are based

on what is called an elementary effect. It is defined as follows. The range of each input

variable is divided into p levels. Then the elementary effect (incremental ratio) of the

i-th input factor is defined as

EEi (x∗) =

[
G
(
x∗1, . . . , x

∗
i−1, x

∗
i +∆, x∗i+1, . . . , x

∗
d

)
−G (x∗)

]
∆

, (1)

where ∆ is a predetermined multiple of 1/(p-1) and point x∗ = (x∗1, . . . , x
∗
d) ∈ Hd

is such that x∗i + ∆ ≤ 1. One can see that the elementary effect are finite difference

approximations of the model derivative with respect to xi and using a large perturbation

step ∆.

The distribution of elementary effects EEi is obtained by randomly sampling R

points from Hd. Two sensitivity measures are evaluated for each factor: µi an estimate

of the mean of the distribution EEi, and σi an estimate of the standard deviation of

EEi. A high value of µi indicates an input variable with an important overall influence
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on the output. A high value of σi indicates a factor involved in interaction with other

factors or whose effect is nonlinear. The computational cost of the Morris method is

NF = R (d+1 ).

The revised version of the EEi (x∗) measure and a more effective sampling

strategy, which allows a better exploration of the space of the uncertain input factors

was proposed by Campolongo et al [3]. To avoid the canceling effect which appears in

non-monotonic functions Campolongo et al [3] introduced another sensitivity measure

µ∗i based on the absolute value of EEi(x
∗): |EEi(x

∗)|. It was also noticed that µ∗i has

similarities with the total sensitivity index Stot
i in that it can give a ranking of the

variables similar to that based on the Stot
i but no formal proof of the link between µ∗i

and Stot
i was given [3].

Finally, other extensions of the initial Morris method have been introduced for

the second-order effects’ analysis [2] [4] [6], for the estimation of Morris’ measures with

any-type of design [26] [32] and for building some 3D Morris’ graph [26].

The local sensitivity measure

Consider a differentiable function G (x), where x = (x1, . . . , xd) is a vector of input

variables defined in the unit hypercube Hd (0 ≤ xi ≤ 1 , i = 1, . . . , d). Local sensitivity

measures are based on partial derivatives

Ei(x
∗) =

∂G(x∗)

∂xi
. (2)

This measure Ei is the limit version of the elementary effect EEi defined in (2) when

∆ tends to zero. It is its generalization in this sense. In SA, using the partial derivative

∂G /∂xi is well known as a local method (see Variational Methods). In this paper, the

goal is to take advantage of this information in global SA.

The local sensitivity measure Ei(x
∗) depends on a nominal point x∗ and it

changes with a change of x∗. This deficiency can be overcome by averaging Ei(x
∗) over
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the parameter space Hd. This is done just below, allowing to define new sensitivity

measures, called DGSM for Derivative-based Global Sensitivity Measures.

DGSM for uniformly distributed variables

Assume that ∂G/∂xi ∈ L2. Three different DGSM measures are defined:

νi =

∫
Hd

(
∂G(x)

∂xi

)2

dx, (3)

w
(m)
i =

∫
Hd

xmi
∂G(x)

∂xi
dx, (4)

where m > 0 is a constant, and

ςi =
1

2

∫
Hd

xi(1− xi)
(
∂G(x)

∂xi

)2

dx. (5)

DGSM for randomly distributed variables

Consider a function G (X1, ..., Xd), where X1, ..., Xd are independent random vari-

ables, defined in the Euclidian space Rd, with cumulative density functions (cdfs)

F1 (x1) , ..., Fd (xd). The following DGSM was introduced in Sobol and Kucherenko [38]:

νi =

∫
Rd

(
∂G(x)

∂xi

)2

dF (x) = E

[(
∂G(x)

∂xi

)2
]
, (6)

with F the joint cdf. A new measure is also introduced:

wi =

∫
Rd

∂G(x)

∂xi
dF (x) = E

(
∂G(x)

∂xi

)
. (7)

In (3) and (6), νi is in fact the mean value of (∂G/∂xi)
2. In the following and

in practice, it will be the most useful DGSM.

Sobol’ global sensitivity indices

Definitions

The method of global sensitivity indices developed by Sobol’ (see Variance-based

Sensitivity Analysis: Theory and Estimation Algorithms) is based on ANOVA decom-
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position [10]. Consider a square integrable function G(x) defined in the unit hypercube

Hd. It can be expanded in the following form

G(x) = g0 +
∑
i

gi(xi) +
∑
i<j

gij(xi, xj) + ...+ g12...d(x1, x2, ..., xd). (8)

This decomposition is unique if conditions

∫ 1

0

gi1...isdxik = 0 for 1 ≤ k ≤ s, are

satisfied. Here 1 ≤ i1 < · · · < is ≤ d.

The variances of the terms in the ANOVA decomposition add up to the total

variance of the function

V =
d∑

s=1

d∑
i1<···<is

Vi1...is ,

where Vi1...is =

∫ 1

0

g2i1...is(xi1 , ..., xis)dxi1 , ..., xis are called partial variances.

Sobol’ defined the global sensitivity indices as the ratios

Si1...is = Vi1...is/V.

All Si1...is are non negative and add up to one:

d∑
i=1

Si +
∑
i

∑
j

Sij +
∑
i

∑
j

∑
k

Sijk...+ S1,2,...,d = 1.

Sobol’ also defined sensitivity indices for subsets of variables. Consider two comple-

mentary subsets of variables y and z:

x = (y, z).

Let y = (xi1 , ..., xim), 1 ≤ i1 < ... < im ≤ d,K = (i1, ..., im). The variance correspond-

ing to the set y is defined as

Vy =
m∑
s=1

∑
(i1<···<is)∈K

Vi1...is .

Vy includes all partial variances Vi1 , Vi2 ,. . . , Vi1...is such that their subsets of indices

(i1, ..., is) ∈ K.
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The total sensitivity indices were introduced by Homma and Saltelli [11]. The

total variance V tot
y is defined as

V tot
y = V − Vz.

V tot
y consists of all Vi1...is such that at least one index ip ∈ K while the remaining indices

can belong to the complimentary to K set K̄. The corresponding global sensitivity

indices are defined as

Sy = Vy/V,

Stot
y = V tot

y /V.

(9)

The important indices in practice are Si and Stot
i , i = 1, ..., d:

Si = Vi/V,

Stot
i = V tot

i /V.

(10)

Their values in most cases provide sufficient information to determine the sensitivity of

the analyzed function to individual input variables. Variance-based methods generally

require a large number of function evaluations (see Variance-based Methods: Theory

and Algorithms) to achieve reasonable convergence and can become impractical for

large engineering problems.

Useful relationships

To present further results on lower and upper bounds of Stot
i , new notations and useful

relationships have to be firstly presented. Denote ui(x) the sum of all terms in the

ANOVA decomposition (8) that depend on xi:

ui(x) = gi(xi) +
d∑

j=1,j 6=i

gij(xi, xj) + · · ·+ g12···d(x1, · · · , xd). (11)

From the definition of ANOVA decomposition it follows that

∫
Hd

ui(x)dx = 0. (12)
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It is obvious that

∂G

∂xi
=
∂ui
∂xi

. (13)

Denote z = (x1, ..., xi−1, xi+1, ..., xd) the vector of all variables but xi, then x ≡ (xi, z)

and G(x) ≡ G(xi, z). The ANOVA decomposition of G(x) (8) can be presented in the

following form

G(x) = ui(xi, z) + v(z),

where v(z) is the sum of terms independent of xi. Because of (12) it is easy to show

that v(z) =

∫ 1

0

G(x)dxi. Hence

ui(xi, z) = G(x)−
∫ 1

0

G(x)dxi. (14)

This equation can be found in Lamboni [18]. The total partial variance V tot
i can be

computed as

V tot
i =

∫
Hd

u2i (x)dx =

∫
Hd

u2i (xi, z)dxidz.

Then the total sensitivity index Stot
i (10) is equal to

Stot
i =

1

V

∫
Hd

u2i (x)dx. (15)

A first direct link between total Sobol’ sensitivity indices and

partial derivatives

Consider continuously differentiable function G(x) defined in the unit hypercube

Hd=[0, 1]d. This section presents a theorem that establishes links between the index

Stot
i and the limiting values of |∂G/∂xi|.

In the case when y = (xi), Sobol’-Jansen formula [14][35][31] for Dtot
i can be

rewritten as

Dtot
i =

1

2

∫
Hd

∫ 1

0

[
G (x)−G

( ◦
x
)]2

dxdx′i, (16)

where
o
x = (x1, ..., xi−1, x

′
i, xi+1, ..., xn).

Theorem 1. Assume that c ≤
∣∣∣∣∂G∂xi

∣∣∣∣ ≤ C, then
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c2

12V
≤ Stot

i ≤
C2

12V
. (17)

Proof: Consider the increment of G (x) in (16):

G (x)−G
( ◦
x
)

=
∂G (x̂)

∂xi
(xi − x′i) , (18)

where x̂ is a point between x and
◦
x. Substituting (18) into (16) leads to

V tot
i =

1

2

∫
Hd

∫ 1

0

(
∂G (x̂)

∂xi

)2

(xi − x′i)
2
dxdx′i. (19)

In (19) c2 ≤ (∂G/∂xi)
2 ≤ C2 while the remaining integral is∫ 1

0

∫ 1

0

(x′i − xi)
2
dx′idxi =

1

6
.

Thus obtained inequalities are equivalent to (17). Consider the function G = g0+c(xi−

1/2). In this case C = c, V = 1/12 and Stot
i = 1 and the inequalities in (17) become

equalities.

DGSM-based bounds for uniformly and normally

distributed variables

In this section, several theorems are listed in order to define useful lower and upper

bounds of the total Sobol’ indices. The proofs of these theorems come from previous

works and papers and are not recalled here. Two cases are considered: variables x

following uniform distributions and variables x following Gaussian distributions. The

general case will be seen in a subsequent section.

Uniformly distributed variables

Lower bounds on Stot
i

Theorem 2. There exists the following lower bound between DGSM (3) and the Sobol’

total sensitivity index:



12(∫
Hd [G (1, z)−G (0, z)] [G (1, z) +G (0, z)− 2G (x)] dx

)2
4νiV

< Stot
i (20)

Proof: The proof of this Theorem is given in Kucherenko and Song [16] and is based

on equation (15) and a Cauchy-Schwartz inequality applied on

∫
Hd

ui(x)
∂ui(x)

∂xi
dx.

The lower bound number number one (LB1) is defined as(∫
Hd [G (1, z)−G (0, z)] [G (1, z) +G (0, z)− 2G (x)] dx

)2
4νiV

.

Theorem 3. There exists the following lower bound, denoted γ(m), between DGSM

(4) and the Sobol’ total sensitivity index:

γ(m) =
(2m+ 1)

[∫
Hd (G(1, z)−G(x)) dx− w(m+1)

i

]2
(m+ 1)2V

< Stot
i . (21)

Proof: The proof of this Theorem in given in Kucherenko and Song [16] and is based

on equation (15) and a Cauchy-Schwartz inequality applied on

∫
Hd

xmi ui(x)dx.

In fact, Theorem 3 gives a set of lower bounds depending on parameter m. The

value of m at which γ(m) attains its maximum is of particular interest. Further, star

(∗) is used to denote such a value m: m∗ = arg max(γ(m)). γ(m∗) is called the lower

bound number two (LB2):

γ(m∗) =
(2m∗ + 1)

[∫
Hd (G(1, z)−G(x)) dx− w(m∗+1)

i

]2
(m∗ + 1)2V

(22)

The maximum lower bound LB* is defined as

LB* = max(LB1,LB2). (23)

Both lower and upper bounds can be estimated by a set of derivative based measures:

Υi = {νi, w(m)
i , ζi}, m > 0. (24)
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Upper bounds on Stot
i

Theorem 4. There exists the following upper bound between DGSM (3) and the

Sobol’ total sensitivity index:

Stot
i ≤

νi
π2V

. (25)

Proof: The proof of this Theorem in given in Sobol and Kucherenko [38]. It is based

on inequality: ∫ 1

0

u2 (x) dx ≤ 1

π2

∫ 1

0

(
∂u

∂x

)2

dx

and relationships (13) and (15).

Consider the set of values ν1, ..., νd, 1 ≤ i ≤ d. One can expect that smaller νi

correspond to less influential variables xi. This importance criterion is similar to the

modified Morris importance measure µ∗, whose limiting values are

µ∗i =

∫
Hd

∣∣∣∣∂G(x)

∂xi

∣∣∣∣ dx.
From a practical point of view the criteria µi and νi are equivalent: they are

evaluated by the same numerical algorithm and are linked by relations νi ≤ Cµi and

µi ≤
√
νi.

The right term in (25) is further called the upper bound number one (UB1).

Theorem 5. There exists the following upper bound between DGSM (5) and the

Sobol’ total sensitivity index:

Stot
i ≤

ςi
V
. (26)

Proof: The following inequality [10] is used:

0 ≤
∫ 1

0

u2dx−
(∫ 1

0

udx

)2

≤ 1

2

∫ 1

0

x(1− x)u′2dx. (27)

The inequality is reduced to an equality only if u is constant. Assume that u is given

by (11), then

∫ 1

0

udx = 0. From (27), equation (26) is obtained.
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Further ςi/D is called the upper bound number two (UB2). Note that 1
2
xi(1−xi)

for 0 ≤ xi ≤ 1 is bounded: 0 ≤ 1
2
xi(1− xi) ≤ 1/8. Therefore, 0 ≤ ςi ≤ νi/8.

Normally distributed variables

Lower bound on Stot
i

Theorem 6. If Xi is normally distributed with a mean µi and a finite variance σ2
i , there

exists the following lower bound between DGSM (7) and the Sobol’ total sensitivity

index:

σ4
i

(µ2
i + σ2

i )V
w2

i ≤ Stot
i . (28)

Proof: Using the equation (15) and Cauchy-Schwartz inequality applied on

∫
Rd

xiui(x)dF (x)

(with F the joint cdf), Kucherenko and Song [16] give the proof of this inequality when

µi = 0 (omitting to mention this condition). The general proof, obtained by Petit [25],

is given below.

Consider a univariate function g(X), with X a normally distributed variable

with mean µ, finite variance σ2 and cdf F . With adequate conditions on g, the following

equality is obtained by integrating by parts:

E[g′(X)] =

∫ ∞
−∞

g′(x)dF (x) =
1

σ
√

2π

∫ ∞
−∞

g′(x) exp

[
−(x− µ)2

2σ2

]
dx

=
1

σ
√

2π

[
g(x) exp

[
−(x− µ)2

2σ2

]]+∞
−∞

+
1

σ
√

2π

∫ ∞
−∞

g(x)
x− µ
σ2

exp

[
−(x− µ)2

2σ2

]
dx

=
1

σ2

∫ ∞
−∞

xg(x)dF (x)− µ
∫ ∞
−∞

g(x)dF (x).

In this equation, replacing g(x) by ui(x) with xi normally distributed, the wi

DGSM writes

wi =

∫
Rd

∂G(x)

∂xi
dF (x) =

∫
Rd

∂ui(x)

∂xi
dF (x) =

1

σ2
i

∫
Rd

xiui(x)dF (x),

because
∫
Rd ui(x)dF (x) = 0 (due to the ANOVA decomposition condition). Moreover,

the Cauchy-Schwartz inequality applied on
∫
Rd xiui(x)dF (x) gives
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Rd

xiui(x)dF (x)

]2
≤
∫
Rd

x2i dF (x)

∫
Rd

[ui(x)]2dF (x).

Combining the two latter equations leads to the expression

w2
i ≤

1

σ4
i

(µ2
i + σ2

i )V Stot
i ,

which is equivalent to Eq. (28).

Upper bounds on Stot
i

The following Theorem 7 is a generalization of Theorem 1.

Theorem 7. If Xi has a finite variance σ2
i and c ≤

∣∣∣∣∂G∂xi
∣∣∣∣ ≤ C, then

σ2
i c

2

V
≤ Stot

i ≤
σ2
iC

2

V
. (29)

The constant factor σ2
i cannot be improved.

Theorem 8. If Xi is normally distributed with a finite variance σ2
i , there exists the

following upper bound between DGSM (6) and the Sobol’ total sensitivity index:

Stot
i ≤

σ2
i

V
νi. (30)

The constant factor σ2
i cannot be reduced.

Proof: The proofs of these Theorems are presented in Sobol and Kucherenko [38].

DGSM-based bounds for groups of variables

Let x = (x1, ..., xd) be a point in the d−dimensional unit hypercube with Lebesgue

measure dx = dx1 · · ·dxd. Consider an arbitrary subset of the variables y = (xi1 , ..., xis),

1 ≤ i1 ≤ . . . ≤ is ≤ d, and the set of remaining complementary variables z, so that

x = (y, z), dx = dy dz. Further all the integrals are written without integration limits,

by assuming that each integration variable varies independently from 0 to 1.
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Consider the following DGSM τy:

τy =
s∑

p=1

∫ (
∂G (x)

∂xip

)2 1− 3xip + 3x2ip
6

dx. (31)

Theorem 9. If G (x) is linear with respect to xi1 , ..., xis , then V tot
y = τy, or in other

words Stot
y =

τy
V

.

Theorem 10. The following general inequality holds: V tot
y ≤

(
24
/
π2
)
τy, or in other

words Stot
y ≤

24

π2V
τy.

Proof: The proofs of these Theorems are given in Sobol and Kucherenko [39]. The

second theorem shows that small values of τy imply small values of Stot
y and this allows

identification of a set of unessential factors y (usually defined by a condition of the

type Stot
y < ε, where ε is small).

Importance criterion τi

Consider the one dimensional case when the subset y consists of only one variable

y = (xi), then measure τy = τi has the form

τi =

∫ (
∂G (x)

∂xi

)2
1− 3xi + 3x2i

6
dx. (32)

It is easy to show that νi/24 ≤ τi ≤ νi/6. From UB1 it follows that

Stot
i ≤

24

π2V
τi. (33)

Thus small values of τi imply small values of Stot
i , that are characteristic for non

important variables xi. At the same time, the following corollary is obtained from

Theorem 9: if G (x) depends linearly on xi, then Stot
i = τi/V . Thus τi is closer to V tot

i

than νi.

Note that the constant factor 1/π2 in (25) is the best possible. But in the general

inequality for τi (33) the best possible constant factor is unknown.

There is a general link between importance measures τi, ςi and νi:
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τi = −ςi +
1

6
νi,

then

ςi =
1

6
νi − τi.

Normally distributed random variables

Consider independent normal random variablesX1, ..., Xd with parameters (µi, σi)i=1...d.

Define τi as

τi =
1

2
E

[(
∂G (x)

∂xi

)2

(x′i − xi)
2

]
.

The expectation over x′i can be computed analytically. Then

τi =
1

2
E

[(
∂G (x)

∂xi

)2
(xi − µi)

2 + σ2
i

2

]
.

Theorem 11. If X1, ..., Xd are independent normal random variables, then for an

arbitrary subset y of these variables, the following inequality is obtained:

Stot
y ≤

2

V
τy.

Proof: The proof is given in Sobol and Kucherenko [39].

DGSM-based upper bounds in the general case

As previously, consider the function G (X1, ..., Xd), where X1, ..., Xd are independent

random variables, defined in the Euclidian space Rd, with cdfs F1 (x1) , ..., Fd (xd). As-

sume further that each Xi admits a probability density function (pdf), denoted by

fi(xi). In the following, all the integrals are written without integration limits.

The developments in this section are based on the classical L2-Poincaré inequal-

ity: ∫
G(x)2dF (x) ≤ C(F )

∫
‖∇G(x)‖2dF (x) (34)
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where F is the joint cdf of (X1, ..., Xd). (34) is valid for all functions G in L2(F ) such

that
∫
G(x)dF (x) = 0 and ‖∇f‖ ∈ L2(F ). The constant C(F ) in Eq. (34) is called a

Poincaré constant of F . In some cases, it exists and optimal Poincaré constant Copt(F )

which is the best possible constant. In measure theory, the Poincaré constants are

expressed as a function of so-called Cheeger constants [1] which are used for SA in

Lamboni et al [19] (see Roustant et al [28] for more details).

A connection between total indices and DGSM has been established by Lamboni

et al [19] for variables with continuous distributions (called Boltzmann probability

measures in their paper).

Theorem 12. Let Fi and fi be respectively the cdf and the pdf of Xi, the following

inequality is obtained:

Stot
i ≤

C(Fi)

V
νi, (35)

with νi the DGSM defined in Eq. (6) and

C(Fi) = 4

[
sup
x∈R

min (Fi(x), 1− Fi(x))

fi(x)

]2
. (36)

Proof: This result comes from the direct application of the L2-Poincaré inequality (34)

on ui(x) (see Eq. (11)).

In Lamboni et al [19] and Roustant et al [28], the particular case of log-concave

probability distribution has been developed. It includes classical distributions as for

instance the normal, exponential, Beta, Gamma and Gumbel distributions. In this

case, the constant writes

C(Fi) =
1

fi(m̃i)2
(37)

with m̃i the median of the distribution Fi. This allows to obtain analytical expressions

for C(Fi) in several cases [19]. In the case of a log-concave truncated distribution on

[a, b], the constant writes [28]

(Fi(b)− Fi(a))2 /fi

(
qi

(
Fi(a) + Fi(b)

2

))2

(38)
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with qi(·) the quantile function of Xi. Table 1 gives some examples of Poincaré constants

for several well-known and often used probability distributions in practice.

Distribution Poincaré constant Optimal constant

Uniform U [a b] (b− a)2/π2 yes

Normal N (µ, σ2) σ2 yes

Exponential E(λ), λ > 0
4

λ2
yes

Gumbel G(µ, β), scale β > 0

(
2β

log 2

)2

no

Weibull W(k, λ), shape k ≥ 1, scale λ > 0

[
2λ(log 2)(1−k)/k

k

]2
no

Table 1. Poincaré constants for a few probability distributions.

For studying second-order interactions, Roustant et al [28] have derived a similar

to (35) inequality based on the squared crossed derivatives of the function. Assuming

that second-order derivatives of G are in L2(F ), it uses the so-called crossed-DGSM

νij =

∫ (
∂2G(x)

∂xi∂xj

)2

dF (x), (39)

introduced by Friedman and Popescu [7]. An inequality link is made with an extension

of the total Sobol’ sensitivity indices to general sets of variables (called superset im-

portance or total interaction index) proposed by Liu and Owen [20]. In the case of a

pair of variables {Xi, Xj}, the superset importance is defined as

V super
ij =

∑
I⊇{i,j}

VI . (40)

The estimation methods of this total interaction index have also been studied by Fruth

et al [8].

Theorem 13. For all pairs {i, j} (1 ≤ i < j ≤ d),

Vij ≤ V super
ij ≤ C(Fi)C(Fj)νij. (41)

These inequalities with the corresponding Sobol’ indices write
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Sij ≤ Ssuper
ij ≤ C(Fi)C(Fj)

V
νij. (42)

Roustant et al [28] have shown on several examples how to apply this result in

order to detect pairs of inputs that do not interact together (see also Muehlenstaedt

et al [22] and Fruth et al [8] which use Sobol’ indices).

Computational costs

All DGSM can be computed using the same set of partial derivatives
∂G(x)

∂xi
, i =

1, ..., d. Evaluation of
∂G(x)

∂xi
can be done analytically for explicitly given easily-

differentiable functions or numerically:

∂G(x∗)

∂xi
=

[
G
(
x∗1, . . . , x

∗
i−1, x

∗
i + δ, x∗i+1, . . . , x

∗
n

)
−G (x∗)

]
δ

. (43)

This is called a finite-difference scheme (see Variational Methods) with δ which is a

small increment. There is a similarity with the elementary effect formula (2) of the

Morris method which is however computed with large ∆.

In the case of straightforward numerical estimations of all partial derivatives

(43) and computation of integrals using MC or QMC methods, the number of required

function evaluations for a set of all input variables is equal to N(d + 1), where N is

a number of sampled points. Computing LB1 also requires values of G (0, z) , G (1, z),

while computing LB2 requires only values of G (1, z). In total, numerical computation

of LB* for all input variables would require NLB*
G = N(d + 1) + 2Nd = N(3d + 1)

function evaluations. Computation of all upper bounds requireNUB
G = N(d+1) function

evaluations. This is the same number that the number of function evaluations required

for computation of Stot
i which is NS

G = N(d+ 1) [31].

However, the number of sampled points N needed to achieve numerical con-

vergence can be different for DGSM and Stot
i . It is generally lower for the case of
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DGSM. Moreover, the numerical efficiency of the DGSM method can be significantly

increased by using algorithmic differentiation in the adjoint (reverse) mode [9] (see

also Variational Methods). This approach allows estimating all derivatives at a cost

independent of d, at most 4-6 times of that for evaluating the original function G(x)

[13].

Test cases

In this section, three test cases are considered, in order to illustrate application of

DGSM and their links with Stot
i .

Example 1. Consider a linear with respect to xi function:

G(x) = a(z)xi + b(z).

For this function Si = Stot
i , V tot

i =
1

12

∫
Hd−1

a2(z)dz, νi =

∫
Hd−1

a2(z)dz, LB1 =(∫
Hd (a2(z)− 2a2(z)xi) dzdxi

)2
4V
∫
Hd−1 a2(z)dz

= 0 and γ(m) =
(2m+ 1)m2

(∫
Hd−1 a(z)dz

)2
4(m+ 2)2(m+ 1)2V

. A maxi-

mum value of γ(m) is attained at m∗=3.745, while γ∗(m∗) =
0.0401

V

(∫
a(z)dz

)2

. The

lower and upper bounds are LB* ≈ 0.48Stot
i , UB1 ≈ 1.22Stot

i . UB2 =
1

12V

∫ 1

0

a(z)2dz =

Stot
i .

For this test function UB2 < UB1.

Example 2. Consider the so-called g-function which is often used in global SA for

illustration purposes:

G(x) =
d∏

i=1

vi,

where vi =
|4xi − 2|+ ai

1 + ai
, ai(i = 1, ..., d) are constants. It is easy to see that for this

function gi(xi) = (vi− 1), ui(x) = (vi− 1)
∏d

j=1,j 6=i vj and as a result LB1=0. The total

variance is V = −1 +
d∏

j=1

(
1 +

1/3

(1 + aj)2

)
. The analytical values of Si, S

tot
i and LB2

are given in Table 2.
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Table 2. The analytical expressions for Si, S
tot
i and LB2 for g-function.

Si Stot
i γ(m)

1/3

(1 + ai)2V

1/3
(1+ai)2

∏d
j=1,j 6=i

(
1 + 1/3

(1+aj)2

)
V

(2m+ 1)

[
1− 4(1−(1/2)m+1)

m+2

]2
(1 + ai)2(m+ 1)2V

By solving equation
dγ(m)

dm
= 0, m∗=9.64 and γ(m∗) =

0.0772

(1 + ai)2V
. It is in-

teresting to note that m∗ does not depend on ai, i = 1, 2, ..., d and d. In the extreme

cases: if ai → ∞ for all i,
γ(m∗)

Stot
i

→ 0.257,
Si

Stot
i

→ 1, while if ai → 0 for all i,

γ(m∗)

Stot
i

→ 0.257

(4/3)d−1
,
Si

Stot
i

→ 1

(4/3)d−1
. The analytical expression for Stot

i , UB1 and

UB2 are given in Table 3.

Table 3. The analytical expressions for Stot
i , UB1 and UB2 for g-function.

Stot
i UB1 UB2

1/3
(1+ai)2

∏d
j=1,j 6=i

(
1 + 1/3

(1+aj)2

)
V

16
∏d

j=1,j 6=i

(
1 + 1/3

(1+aj)2

)
(1 + ai)2π2V

4
∏d

j=1,j 6=i

(
1 + 1/3

(1+aj)2

)
3(1 + ai)2V

For this test function
Stot
i

UB1
=
π2

48
,
Stot
i

UB2
=

1

4
, hence

UB2

UB1
=
π2

12
< 1.

Values of Si, S
tot
i , UB1, UB2 and LB2 for the case of a=[0,1,4.5,9,99,99,99,99],

d=8 are given in Table 4 and shown in Fig. 1. One can see that the knowledge of LB2

and UB1 allows to rank correctly all the variables in the order of their importance.

Table 4. Values of LB*, Si, S
tot
i , UB1 and UB1. Example 2, a=[0,1,4.5,9,99,99,99,99], d=8.

x1 x2 x3 x4 x5...x8

LB* 0.166 0.0416 0.00549 0.00166 0.000017

Si 0.716 0.179 0.0237 0.00720 0.0000716

Stot
i 0.788 0.242 0.0343 0.0105 0.000105

UB1 3.828 1.178 0.167 0.0509 0.00051

UB2 3.149 0.969 0.137 0.0418 0.00042

Example 3. Consider the reduced Morris’ test function with four inputs [3]:
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Fig. 1. Values of Si, Stot
i , LB2 and UB1 for all input variables. Example 2 with a =

[0, 1, 4.5, 9, 99, 99, 99, 99], d = 8.

f(x) =
4∑

i=1

bixi +
4∑

i≤j

bijxixj +
4∑

i≤j≤k

bijkxixjxk (44)

with bi =



0.05

0.59

10

0.21


, bij =



0 80 60 40

0 30 0.73 0.18

0 0 0.64 0.93

0 0 0 0.06


, bij4 =



0 10 0.98 0.19

0 0 0.49 50

0 0 0 1

0 0 0 0


.

The indices bijk ∀ k 6= 4 are null.

The four input variables xi (i = 1, . . . , 4) follow uniform distribution on [0, 1].

Sobol’ indices are computed via the Monte-carlo scheme of Saltelli [29] (using two

initial matrices of size 105), while DGSM are computed with Monte-Carlo sampling of

size n (using derivatives computing by finite differences (43) with δ = 10−5), with n

ranging from 20 to 500, Figure 2 shows that DGSM bounds UB1i are greater than

the total Sobol’ indices STi
(for i = 1, 2, 3, 4) as expected, except for n < 30 which is

a too small sample size. For small STi
, UB1i is close to the STi

value. It confirms that

DGSM bounds are first useful for screening exercises. Other numerical tests involving

non-uniform and non-normal distributions for the inputs can be found in Lamboni et al

[19] and Fruth et al [8].
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Fig. 2. For the 4 input variables of the reduced Morris’ test function: Convergence of the DGSM

bound estimates (solid lines) in function of the sample size and comparison to theoretical values of

total Sobol’ indices STi
(dashed lines).

Conclusions

This paper has shown that using lower and upper bounds based on DGSM is possible

in most cases to get a good practical estimation of the values of Stot
i at a fraction of

the CPU cost for estimating Stot
i . Upper and lower bounds can be estimated using

MC/QMC integration methods using the same set of partial derivative values. Most

of the applications show that DGSM can be used for fixing unimportant variables

and subsequent model reduction because small values of DGSM imply small values

of Stot
i . In a general case variable ranking can be different for DGSM and variance

based methods but for linear function and product function, DGSM can give the same

variable ranking as Stot
i .
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Engineering applications of DGSM can be found for instance in Kiparissides

et al [15] and Rodriguez-Fernandez et al [27] for biological systems modeling, Patelli

et al [24] for structural mechanics, Iooss et al [12] for an aquatic prey-predator model,

Petit [25] for a river flood model and Touzany and Busby [41] for an hydrogeological

simulator of the oil industry. One of the main prospect in practical situations is to

use algorithmic differentiation in the reverse (adjoint) mode on the numerical model,

allowing to estimate efficiency all partial derivatives of this model (see Variational

Methods). In this case, the cost of DGSM estimations would be independent of the

number of input variables. Obtaining global sensitivity information in a reasonable

cpu time cost is therefore possible even for large-dimensional model (several tens and

spatially distributed inputs in the recent and pioneering attempt of Petit [25]). When

the adjoint model is not available, the DGSM estimation remains a problem in high

dimension and novel ideas have to be explored [23] [24]. Coupling DGSM with non-

parametric regression techniques or metamodel-based technique (see Metamodel-based

sensitivity analysis: Polynomial chaos expansions and Gaussian processes) is another

research prospect as first shown by Sudret and Mai [40] and De Lozzo and Marrel [5].
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25. Petit S (2015) Analyse de sensibilité globale du module MASCARET par l’utilisation de la
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