16 research outputs found

    Digital soil mapping from conventional field soil observations

    Get PDF
    We tested the performance of a formalized digital soil mapping (DSM) approach comprising fuzzy k-means (FKM) classification and regression-kriging to produce soil type maps from a fine-scale soil observation network in Risnovce, Slovakia. We examine whether the soil profile descriptions collected merely by field methods fit into the statistical DSM tools and if they provide pedologically meaningful results for an erosion-affected area. Soil texture, colour, carbonates, stoniness and genetic qualifiers were estimated for a total of 111 soil profiles using conventional field methods. The data were digitized along semi-quantitative scales in 10-cm depth intervals to express the relative differences, and afterwards classified by the FKM method into four classes A-D: (i) Luvic Phaeozems (Anthric), (ii) Haplic Phaeozems (Anthric, Calcaric, Pachic), (iii) Calcic Cutanic Luvisols, and (iv) Haplic Regosols (Calcaric). To parameterize regression-kriging, membership values (MVs) to the above A-D class centroids were regressed against PCA-transformed terrain variables using the multiple linear regression method (MLR). MLR yielded significant relationships with R2 ranging from 23% to 47% (P < 0.001) for classes A, B and D, but only marginally significant for Luvisols of class C (R2 = 14%, P < 0.05). Given the results, Luvisols were then mapped by ordinary kriging and the rest by regression-kriging. A 'leave-one-out' cross-validation was calculated for the output maps yielding R2 of 33%, 56%, 22% and 42% for Luvic Phaeozems, Haplic Phaeozems, Luvisols and also Regosols, respectively (all P < 0.001). Additionally, the pixel-mixture visualization technique was used to draw a synthetic digital soil map. We conclude that the DSM model represents a fully formalized alternative to classical soil mapping at very fine scales, even when soil profile descriptions were collected merely by field estimation methods. Additionally to conventional soil maps it allows to address the diffuse character in soil cover, both in taxonomic and geographical interpretations

    Tight junctions and the modulation of barrier function in disease

    Get PDF
    Tight junctions create a paracellular barrier in epithelial and endothelial cells protecting them from the external environment. Two different classes of integral membrane proteins constitute the tight junction strands in epithelial cells and endothelial cells, occludin and members of the claudin protein family. In addition, cytoplasmic scaffolding molecules associated with these junctions regulate diverse physiological processes like proliferation, cell polarity and regulated diffusion. In many diseases, disruption of this regulated barrier occurs. This review will briefly describe the molecular composition of the tight junctions and then present evidence of the link between tight junction dysfunction and disease

    World’s soils are under threat

    No full text
    The Intergovernmental Technical Panel on Soils has completed the first State of the World’s Soil Resources report. Globally soil erosion was identified as the gravest threat, leading to deteriorating water quality in developed regions and to lowering of crop yields in many developing regions. We need to increase nitrogen and phosphorus fertilizer use in infertile tropical and semi-tropical soils – the regions where the most food insecure among us are found – while reducing global use of these products overall. Stores of soil organic carbon are critical in the global carbon balance, and national governments must set specific targets to stabilize or ideally increase soil organic carbon stores. Finally the quality of soil information available for policy formulation must be improved – the regional assessments in the SWSR report frequently base their evaluations on studies from the 1990s based on observations made in the 1980s or earlier.JRC.H.5-Land Resources Managemen

    Soil legacy data rescue via GlobalSoilMap and other international and national initiatives

    Get PDF
    Legacy soil data have been produced over 70 years in nearly all countries of the world. Unfortunately, data, information and knowledge are still currently fragmented and at risk of getting lost if they remain in a paper format. To process this legacy data into consistent, spatially explicit and continuous global soil information, data are being rescued and compiled into databases. Thousands of soil survey reports and maps have been scanned and made available online. The soil profile data reported by these data sources have been captured and compiled into databases. The total number of soil profiles rescued in the selected countries is about 800,000. Currently, data for 117, 000 profiles are compiled and harmonized according to GlobalSoilMap specifications in a world level database (WoSIS). The results presented at the country level are likely to be an underestimate. The majority of soil data is still not rescued and this effort should be pursued. The data have been used to produce soil property maps. We discuss the pro and cons of top-down and bottom-up approaches to produce such maps and we stress their complementarity. We give examples of success stories. The first global soil property maps using rescued data were produced by a top-down approach and were released at a limited resolution of 1 km in 2014, followed by an update at a resolution of 250 m in 2017. By the end of 2020, we aim to deliver the first worldwide product that fully meets the GlobalSoilMap specifications

    Cis-Dimerization Mediates Function of Junctional Adhesion Molecule A

    No full text
    Junctional adhesion molecule-A (JAM-A) is a transmembrane component of tight junctions that has been proposed to play a role in regulating epithelial cell adhesion and migration, yet mechanistic structure–function studies are lacking. Although biochemical and structural studies indicate that JAM-A forms cis-homodimers, the functional significance of dimerization is unclear. Here, we report the effects of cis-dimerization–defective JAM-A mutants on epithelial cell migration and adhesion. Overexpression of dimerization-defective JAM-A mutants in 293T cells inhibited cell spreading and migration across permeable filters. Similar inhibition was observed with using dimerization-blocking antibodies. Analyses of cells expressing the JAM-A dimerization-defective mutant proteins revealed diminished β1 integrin protein but not mRNA levels. Further analyses of β1 protein localization and expression after disruption of JAM-A dimerization suggested that internalization of β1 integrin precedes degradation. A functional link between JAM-A and β1 integrin was confirmed by restoration of cell migration to control levels after overexpression of β1 integrin in JAM-A dimerization-defective cells. Last, we show that the functional effects of JAM dimerization require its carboxy-terminal postsynaptic density 95/disc-large/zonula occludins-1 binding motif. These results suggest that dimerization of JAM-A regulates cell migration and adhesion through indirect mechanisms involving posttranscriptional control of β1 integrin levels
    corecore