303 research outputs found

    Evaluation, comparison and differentiation of geopolymers by studying microstructural

    Get PDF
    Geopolymers are materials derived from an activation process materials with high content in silicon and aluminum, that in contact with an alkaline solution can acquire cementitious properties, and whose added value is to be environmentally friendly. This research have like objective to determine the efficiency of geopolymers using two different types of fly ash (FA) as a possible replacement of an alternative material to cement Portland (CP). The manufacturing process consisted of the FA activation using NaOH, the tests conducted included the chemical characterization of the FA through X-ray fluorescence (XRF) and X-ray Diffraction (XRD); as well as the determination of the compressive strength at various ages curing according to ASTM C10 and development of crystalline phases by XRD. The results showed that with increased age curing is achieved the development of resistance and the generation of crystalline phases, also acquiring compression strength above of 20 MPa at the age of 14 days cure.Peer ReviewedPostprint (published version

    Twentieth century turnover of Mexican endemic avifaunas: Landscape change versus climate drivers

    Get PDF
    Numerous climate change effects on biodiversity have been anticipated and documented, including extinctions, range shifts, phenological shifts, and breakdown of interactions in ecological communities, yet the relative balance of different climate drivers and their relationships to other agents of global change (for example, land use and land-use change) remains relatively poorly understood. This study integrated historical and current biodiversity data on distributions of 115 Mexican endemic bird species to document areas of concentrated gains and losses of species in local communities, and then related those changes to climate and land-use drivers. Of all drivers examined, at this relatively coarse spatial resolution, only temperature change had significant impacts on avifaunal turnover; neither precipitation change nor human impact on landscapes had detectable effects. This study, conducted across species’ geographic distributions, and covering all of Mexico, thanks to two large-scale biodiversity data sets, could discern relative importance of specific climatic drivers of biodiversity change

    Ecological approaches in veterinary epidemiology: mapping the risk of bat-borne rabies using vegetation indices and night-time light satellite imagery

    Get PDF
    Rabies remains a disease of significant public health concern. In the Americas, bats are an important source of rabies for pets, livestock, and humans. For effective rabies control and prevention, identifying potential areas for disease occurrence is critical to guide future research, inform public health policies, and design interventions. To anticipate zoonotic infectious diseases distribution at coarse scale, veterinary epidemiology needs to advance via exploring current geographic ecology tools and data using a biological approach. We analyzed bat-borne rabies reports in Chile from 2002 to 2012 to establish associations between rabies occurrence and environmental factors to generate an ecological niche model (ENM). The main rabies reservoir in Chile is the bat species Tadarida brasiliensis; we mapped 726 occurrences of rabies virus variant AgV4 in this bat species and integrated them with contemporary Normalized Difference Vegetation Index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The correct prediction of areas with rabies in bats and the reliable anticipation of human rabies in our study illustrate the usefulness of ENM for mapping rabies and other zoonotic pathogens. Additionally, we highlight critical issues with selection of environmental variables, methods for model validation, and consideration of sampling bias. Indeed, models with weak or incorrect validation approaches should be interpreted with caution. In conclusion, ecological niche modeling applications for mapping disease risk at coarse geographic scales have a promising future, especially with refinement and enrichment of models with additional information, such as night-time light data, which increased substantially the model’s ability to anticipate human rabies

    ATP-regulated interactions between P1 ParA, ParB and non-specific DNA that are stabilized by the plasmid partition site, parS

    Get PDF
    Localization of the P1 plasmid requires two proteins, ParA and ParB, which act on the plasmid partition site, parS. ParB is a site-specific DNA-binding protein and ParA is a Walker-type ATPase with non-specific DNA-binding activity. In vivo ParA binds the bacterial nucleoid and forms dynamic patterns that are governed by the ParB–parS partition complex on the plasmid. How these interactions drive plasmid movement and localization is not well understood. Here we have identified a large protein–DNA complex in vitro that requires ParA, ParB and ATP, and have characterized its assembly by sucrose gradient sedimentation and light scattering assays. ATP binding and hydrolysis mediated the assembly and disassembly of this complex, while ADP antagonized complex formation. The complex was not dependent on, but was stabilized by, parS. The properties indicate that ParA and ParB are binding and bridging multiple DNA molecules to create a large meshwork of protein–DNA molecules that involves both specific and non-specific DNA. We propose that this complex represents a dynamic adaptor complex between the plasmid and nucleoid, and further, that this interaction drives the redistribution of partition proteins and the plasmid over the nucleoid during partition

    Current and Future Niche of North and Central American Sand Flies (Diptera: Psychodidae) in Climate Change Scenarios

    Get PDF
    Ecological niche models are useful tools to infer potential spatial and temporal distributions in vector species and to measure epidemiological risk for infectious diseases such as the Leishmaniases. The ecological niche of 28 North and Central American sand fly species, including those with epidemiological relevance, can be used to analyze the vector’s ecology and its association with transmission risk, and plan integrated regional vector surveillance and control programs. In this study, we model the environmental requirements of the principal North and Central American phlebotomine species and analyze three niche characteristics over future climate change scenarios: i) potential change in niche breadth, ii) direction and magnitude of niche centroid shifts, iii) shifts in elevation range. Niche identity between confirmed or incriminated Leishmania vector sand flies in Mexico, and human cases were analyzed. Niche models were constructed using sand fly occurrence datapoints from Canada, USA, Mexico, Guatemala and Belize. Nine non-correlated bioclimatic and four topographic data layers were used as niche components using GARP in OpenModeller. Both B2 and A2 climate change scenarios were used with two general circulation models for each scenario (CSIRO and HadCM3), for 2020, 2050 and 2080. There was an increase in niche breadth to 2080 in both scenarios for all species with the exception of Lutzomyia vexator. The principal direction of niche centroid displacement was to the northwest (64%), while the elevation range decreased greatest for tropical, and least for broad-range species. Lutzomyia cruciata is the only epidemiologically important species with high niche identity with that of Leishmania spp. in Mexico. Continued landscape modification in future climate change will provide an increased opportunity for the geographic expansion of NCA sand flys’ ENM and human exposure to vectors of Leishmaniases

    Evaluation of the Impact of Genetically Modified Cotton After 20 Years of Cultivation in Mexico

    Get PDF
    For more than 20 years cotton has been the most widely sown genetically modified (GM) crop in Mexico. Its cultivation has fulfilled all requirements and has gone through the different regulatory stages. During the last 20 years, both research-institutions and biotech-companies have generated scientific and technical information regarding GM cotton cultivation in Mexico. In this work, we collected data in order to analyze the environmental and agronomic effects of the use of GM cotton in Mexico. In 1996, the introduction of Bt cotton made it possible to reactivate this crop, which in previous years was greatly reduced due to pest problems, production costs and environmental concerns. Bt cotton is a widely accepted tool for cotton producers and has proven to be efficient for the control of lepidopteran pests. The economic benefits of its use are variable, and depend on factors such as the international cotton-prices and other costs associated with its inputs. So far, the management strategies used to prevent development of insect resistance to GM cotton has been successful, and there are no reports of insect resistance development to Bt cotton in Mexico. In addition, no effects have been observed on non-target organisms. For herbicide tolerant cotton, the prevention of herbicide resistance has also been successful since unlike other countries, the onset of resistance weeds is still slow, apparently due to cultural practices and rotation of different herbicides. Environmental benefits have been achieved with a reduction in chemical insecticide applications and the subsequent decrease in primary pest populations, so that the inclusion of other technologies—e.g., use of non-Bt cotton- can be explored. Nevertheless, control measures need to be implemented during transport of the bolls and fiber to prevent dispersal of volunteer plants and subsequent gene flow to wild relatives distributed outside the GM cotton growing areas. It is still necessary to implement national research programs, so that biotechnology and plant breeding advances can be used in the development of cotton varieties adapted to the Mexican particular environmental conditions and to control insect pests of regional importance

    Predicting the Potential Worldwide Distribution of the Red Palm Weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using Ecological Niche Modeling

    Get PDF
    This is the publisher's version, also available electronically from http://www.bioone.org/doi/abs/10.1653/024.095.0317.The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae), ranks among the most important pests of various palm species. The pest originates from South and Southeast Asia, but has expanded its range dramatically since the 1980s. We used ecological niche modeling (ENM) approaches to explore its likely geographic potential. Two techniques, the Genetic Algorithm for Rule-set Prediction (GARP) and a maximum entropy approach (MaxEnt), were used. However, MaxEnt provided more significant results, with all 5 random replicate subsamples having P < 0.002 while GARP models failed to achieve statistical significance in 3 of 5 cases, in which predictions achieved probabilities of 0.07 < P < 0.10. The MaxEnt models predicted successfully the known distribution, including the single North American occurrence point of Laguna Beach, California, and various areas where the pest has been reported in North Africa, southern Europe, Middle East and South and Southeastern Asia. In addition, areas where the pest has not been yet reported were found to be suitable for invasion by RPW in sub-Saharan Africa, southern, central and northern America, Asia, Europe, and Oceania. Highly suitable areas in the United States of America were limited mostly to coastal California and southern Florida, while all Caribbean islands were found highly suitable for establishment and spread of the pest

    Species Interactions during Diversification and Community Assembly in an Island Radiation of Shrews

    Get PDF
    Closely related, ecologically similar species often have adjacent distributions, suggesting competitive exclusion may contribute to the structure of some natural communities. In systems such as island archipelagos, where speciation is often tightly associated with dispersal over oceanic barriers, competitive exclusion may prevent population establishment following inter-island dispersal and subsequent cladogenesis.) species in the Philippines are the result of competitive exclusion preventing secondary invasion of occupied islands. We first compare ecological niche models between two widespread, allopatric species and find statistical support for their ecological similarity, implying that competition for habitat between these species is possible. We then examine dispersion patterns among sympatric species and find some signal for overdispersion of body size, but not for phylogenetic branch length. Finally, we simulate the process of inter-island colonization under a stochastic model of dispersal lacking ecological forces. Results are dependent on the geographic scope and colonization probability employed. However, some combinations suggest that the number of inter-island dispersal events necessary to populate the archipelago may be much higher than the minimum number of colonization events necessary to explain current estimates of species richness and phylogenetic relationships. If our model is appropriate, these results imply that alternative factors, such as competitive exclusion, may have influenced the process of inter-island colonization and subsequent cladogenesis.We interpret the combined results as providing tenuous evidence that similarity in body size may prevent co-occurrence in Philippine shrews and that competitive exclusion among ecologically similar species, rather than an inability to disperse among islands, may have limited diversification in this group, and, possibly other clades endemic to island archipelagos
    corecore