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Abstract

Rabies remains a disease of significant public health concern. In the Americas, bats are an important source of
rabies for pets, livestock, and humans. For effective rabies control and prevention, identifying potential areas for
disease occurrence is critical to guide future research, inform public health policies, and design interventions. To
anticipate zoonotic infectious diseases distribution at coarse scale, veterinary epidemiology needs to advance via
exploring current geographic ecology tools and data using a biological approach. We analyzed bat-borne rabies
reports in Chile from 2002 to 2012 to establish associations between rabies occurrence and environmental factors
to generate an ecological niche model (ENM). The main rabies reservoir in Chile is the bat species Tadarida
brasiliensis; we mapped 726 occurrences of rabies virus variant AgV4 in this bat species and integrated them with
contemporary Normalized Difference Vegetation Index (NDVI) data from the Moderate Resolution Imaging
Spectroradiometer (MODIS). The correct prediction of areas with rabies in bats and the reliable anticipation of
human rabies in our study illustrate the usefulness of ENM for mapping rabies and other zoonotic pathogens.
Additionally, we highlight critical issues with selection of environmental variables, methods for model validation,
and consideration of sampling bias. Indeed, models with weak or incorrect validation approaches should be
interpreted with caution. In conclusion, ecological niche modeling applications for mapping disease risk at coarse
geographic scales have a promising future, especially with refinement and enrichment of models with additional
information, such as night-time light data, which increased substantially the model’s ability to anticipate human
rabies.
Introduction
In light of its continued threat to public health around
the world, rabies has stimulated considerable research
efforts for the development of techniques and tools for
vaccination and diagnosis [1]. While rabies control in
dogs remains the priority in Africa and Asia [2], the
management of wildlife reservoirs is the major challenge
for rabies control in the Americas [3,4]. Thanks to
rabies-elimination efforts in some American countries,
there has been recent progress in acquiring data on
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rabies in wildlife over large areas [5], but more research
is needed to improve spatiotemporal predictions of ra-
bies spillover and guide government interventions.
Chile has a long history of rabies management and con-

trol [6]. Improvements in vaccination campaigns, diagno-
sis, surveillance, data management, and education have
served to eradicate dog-related rabies in the country, with
consequent reduction of human cases [7,8]. At present,
Chile has only a sylvatic cycle of rabies in bats [9]. The
main reservoir identified in Chile is the insectivorous bat
Tadarida brasiliensis [8], a synanthropic bat species with
a geographic distribution ranging from Canada to
southern South America [10]. With increasing reports
of cases of bat-borne rabies in Chile in recent years, a
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Figure 1 Flow chart of the use of ecological niche modeling for
mapping bat-borne rabies risk. Before generating the final model,
the robustness of the use of NDVI, ecological niche modeling algorithm,
and prediction to different areas and periods were assessed in the
geographic and environmental space.
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detailed risk map is needed urgently [8]. The Instituto
de Salud Pública (ISP) Rabies Laboratory in Chile keeps
records of all cases since 1929 [6], including diagnosis
methods and detailed geographic location, collected
mostly through a national passive surveillance system,
which could be the basis for detailed mapping.
Spatial epidemiology is an emerging subdiscipline of

epidemiology that aims to identify geographic areas
with elevated risk of disease transmission [11], whereas
environmental epidemiology works in parallel to iden-
tify environmental factors linked to disease appearance.
Ecological niche modeling (ENM) can be a useful tool
in reaching the goals of both fields: the resulting
models allow researchers to estimate environmental
factors that shape spatial distributions of organisms
[12]. This integration of ecology and biogeography into
public health and epidemiology allows understanding
the geography of past, current, and emerging disease
transmission [13,14], and explaining the role of envir-
onmental changes on climate and landscape [15].
Here, we evaluate ENM performance in predicting ra-

bies cases across Chile using environmental variables from
satellite imagery to generate high-resolution maps of
rabies’ potential distribution across Chile. First, we evalu-
ated the ability of ENM to predict rabies cases across
space and time, using a series of environmental variables,
geographic regions, and time periods to calibrate and
evaluate model predictions. Second, we mapped rabies’
potential distribution across Chile based on environmental
variation in a vegetation greenness index derived from
Moderate Resolution Imaging Spectroradiometer (MODIS)
satellite imagery. Our results demonstrate the usefulness of
ENM for the management of zoonotic diseases. In particu-
lar, this method could be employed to quantify effects of
land-use change on disease emergence and anticipate dis-
ease transmission in areas with lack of surveillance.

Materials and methods
First, we assessed the usefulness of ENM to forecast bat-
borne rabies using validation metrics in the geographic
and the environmental spaces; once the informative
capacity of environmental variables and occurrences was
corroborated, we developed a final model with a post-
processing step to include risk categories (Figure 1).

Study area
Considering the critical role of the extent of the area of
analysis in ENM performance [16], we limited the area
for model calibration based on biogeographic barriers
that included the Andes mountains (East), Pacific Ocean
(West), ice fields in Patagonia (South), and the Atacama
Desert (North; Figure 2). This area contained central
Chile (43.5° S - 28.0° S) and was our a priori hypothesis
regarding the extent of the accessible area, or M [16,17].
Input data
Bat-rabies occurrences during 2002–2012 were obtained
from samples submitted for rabies testing to ISP from pas-
sive and active surveillance. Passive surveillance is the term
used for bats submitted by individuals after accidental find-
ings of sick or dead animals, while active surveillance repre-
sents bat sampling developed by staff from the Ministry of
Health in response to complaints of bats presence. Rabies
diagnosis was based on direct immunofluorescence tests on
bat brain tissues to confirm virus presence [18]. Identifica-
tion of monoclonal antibodies and virus genotypes was car-
ried out on positive samples [19-21]. Positive records were
georeferenced using the freely available Address Validation
Tool to convert textual addresses and location details into
latitude and longitude coordinates with ~ 8 m error; sites
with less accurate details (e.g., municipal parks) were identi-
fied using GoogleEarth with an estimated error <500 m. In
all, of 870 positive bat records, 813 samples from passive
(98%) and active surveillance (2%) had address information
sufficiently detailed for georeferencing. When multiple oc-
currences fell in the same grid cell, duplicates were re-
moved, leaving single occurrences per cell. The final dataset
included 726 occurrences (Figure 2).
As a source of environmental information, we used

vegetation index data from MODIS satellite imagery.



Figure 2 Study areas for model calibration and validation (M). Left: geographic position of Chile (dark gray). Right: study areas within central
Chile (dark gray) and occurrence points (white squares) in the calibration area (dashed line).
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The most important features of vegetation index data-
sets are their relationship to primary productivity and
the fine (8–16 day composites) temporal resolution [22].
We used the Normalized Difference Vegetation Index
(NDVI), as this index provides a measure of herbaceous
biomass and physiology through a ratio of light reflected
in the red (R) and near-infrared (NIR) spectral bands
[23]. This index is calculated as (NIR-R)/(NIR + R), ap-
proximating levels of photosynthetic activity, and has
been associated with animal distribution and abundance
in previous studies [24].
We used 16-day composites of NDVI data: data sets

summarizing bi-weekly NDVI values, at ~500 m resolution,
considering our accuracy in occurrences location, were
downloaded for 2002–2012 from US Geological Survey
([25]; MOD13A1.005). The original files in Hierarchical
Data Format-EOS (HDF), with sinusoidal projection, were
converted to GeoTIFF (Tagged Image File Format) with
geographic projection using the MODIS Reprojection Tool
provided by the NASA Goddard Space Flight Center [26].
NDVI values range from −2000 to 10 000, with fill values
(No Data) set to −3000. NDVI layers were converted to
ASCII files, and fill values changed from −3000 to −9999
to match modeling software requirements. No control
quality flag layers were employed. Additionally, we in-
cluded elevation information from the NASA Shuttle
Radar Topographic Mission (SRTM) at ~500 m resolution
[27]. The importance of parameters in explaining known
cases of rabies was assessed before generating the final
model (see Figure 1).

Model calibration and validation (geographic space)
We designed a first experiment by calibrating the model
with rabies occurrences and NDVI data from 2002–2011,
and validating with data from 2012, representing distinct
regions in geographic space (Figure 3). Areas for calibra-
tion and validation corresponded to three regions of equal
latitudinal width (Figure 3), of which we used northern
and southern sectors for calibration, and the central re-
gion for validation. This framework allowed us to evaluate
model performance across space and time. For this mod-
eling experiment, we averaged 16-day NDVI values by sea-
son. Seasons were categorized as Summer for NDVI
values between 15 December – 15 February, Autumn 15



Figure 3 Model validation schema followed in this study. Calibration areas (black line boxes, left panel) contain occurrences from 2002 to
2011 (yellow squares, left panel) used to predict rabies in 2012 (green points, right panel) in the validation area (dashed box, right panel). Left
panel: calibration areas based on NDVI layers and occurrences from 2002 to 2011. Right panel: validation area based NDVI layers and occurrences for 2012.
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March – 15 May, Winter 15 June – 15 August, and Spring
15 September – 15 November. Inter-seasonal NDVI data-
sets were discarded, as they represented transitional values
between seasons. Minimum, mean, and maximum sea-
sonal values were calculated for validation and calibration
areas, and all 12 environmental layers (four seasons x
three summary statistics) were used in model calibration.
The jackknife model accuracy gain test in Maxent using
all occurrences identified the contribution of each envir-
onmental variable to model performance across the cali-
bration area.
Models were generated using Maxent software version

3.3.3.k [28]. Maxent determines the probability distribu-
tion of maximum entropy (the most uniform), but con-
strained to the expected environmental values that
correspond to the occurrence records [28]. Maxent is
similar to a logistic regression algorithm for presence-
background data (i.e., no true absences available), associat-
ing occurrences (presence) with environmental data across
the study area (background). We selected the following
settings in Maxent: random seed with 20% of occurrences
set aside to evaluate models, 10 bootstrap permutations,
logistic output, and the median of permutations as output.
Additionally, models were calibrated with clamping and
extrapolation options turned off [29]. Using ESRI ArcGIS
9.3, continuous output models from Maxent were con-
verted to binary maps using a threshold based on omis-
sion error, finding the highest Maxent value that omitted
no more than 5% of points employed during model cali-
bration [17]; this step generated a prediction of presence
and absence of environmental conditions suitable for ra-
bies occurrence.
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We used two model performance measures designed for
ENM predictions, based on external sets of validation
areas and occurrences [17]. First, we used a cumulative bi-
nomial test to assess whether predictions of validation oc-
currences across the validation region were statistically
significantly better than random expectations. We used
the validation occurrences as number of trials, the number
of validation occurrences correctly predicted as number of
successes, and the proportion of pixels predicted as suit-
able by the model as the probability of a success [17,30].
Second, as a complementary validation of model perform-
ance, we used a modified version of the area under the
curve (AUC) of the receiving operating characteristic
(ROC), the Partial ROC [31], in which ROC curves are
evaluated only over ranges of values that correspond to
low omission errors. Here, performance was measured
as a ratio between observed prediction and a random
expectation (AUC = 1; e.g., p > 0.05), where ratios above
1 represent predictions better than random expecta-
tions (AUC > 1; e.g., p < 0.05), evaluated using a boot-
strap test [31]. We used Partial ROC software [32] to
develop these tests, with the following settings: 50% of
occurrences for bootstrap, 1000 permutations, and a
threshold of 95% occurrences successfully predicted
(for a detailed explanation, see [33]).

Model calibration and validation (environmental space)
We also validated the model in the environmental space,
using environmental and occurrence datasets spatially and
temporally independent of those used for model calibra-
tion (see Figure 3). A rabies’ ENM calibrated in one region
and period was transferred and analyzed in environments
used to calibrate another rabies’ ENM from a different
area and period, and the shape, position, and size of both
ENMs were compared to assess if our method was able to
capture rabies’ environmental signature across different
times and geographic areas. This novel approach for
model validation was developed using the software
NicheA version 3.0, a powerful tool for display and ana-
lysis of ecological niches in environmental space [34].
First, we generated a model for the calibration area (see
above and Figure 3) by calculating the minimum-volume
ellipsoid including the occurrences for calibration from
2002–2011 against corresponding environments. We
transferred this model to the validation area, occurrences,
and environments (Figure 3) for 2012 to assess the pre-
dictive ability of the calibration model. We measured the
proportion of overlap of the two ellipsoids for the two en-
vironmental data sets, as an estimation of niche similarity
and robust prediction among areas and time frames.

ENM projection across Chile
After validating model predictive accuracy in space and
time, we generated a country-wide model. NDVI datasets
for January 2002 - December 2012 (i.e., the complete study
period) were grouped by season using specific dates (see
above). We used all available occurrences to generate the
countrywide model.
Rabies occurrence records in Chile are influenced by

biases introduced by passive surveillance [19], and this
bias impacts model accuracy [35]. In this context, geo-
graphic bias correction has been suggested as an useful
step in ENM [36]. Another factor affecting model output
is the study area extent: the smaller the study area relative
to the distribution of the species, the greater the challenge
for the algorithms to produce accurate niche models [16].
In a previous study, Escobar et al. [37] found that introdu-
cing sampling effort in the form of number of rabies sam-
ples submitted reduced uncertainty, but did not improve
model performance in terms of area predicted. Thus, to
consider the bias sampling during our model calibration,
we focused on sampled areas instead of number of bat
samples from surveillance. We calibrated models in the
municipalities of central Chile known to be rabies positive
according to surveys. Once the final model was validated
and calibrated in these specific areas, we transferred it to
the whole country.

Mapping human risk of rabies infection
To assess risk of human cases, we combined the binary
map (presence/absence) of environmental suitability for ra-
bies with a surface of human population. To establish
current human population at risk of rabies transmission at
fine resolutions, we filtered the rabies potential distribution
map by location of human settlements. The distribution of
human settlements was derived from mean night-time
light satellite imagery by county, as this variable has a
strong association with density of human populations [38].
We calibrated our population density estimates by regres-
sing country-averaged night-time light values against hu-
man densities from the 2012 census data for Chile [39]
by county area (km2). We used imagery at ~0.75 km reso-
lution, specifically the band that detects light from visible
to infrared acquired for 9 days in April and 13 days in Oc-
tober 2012 by the VIIRS sensor on the Suomi NPP satellite
[40]. We used the first of the three bands that compose this
image, with pixel values ranging 0–255: low values indicat-
ing darkness and high values indicating artificial light from
human settlements. Although some night-time lights cap-
tured by the satellite could be wildfires or lit areas without
human residents, we assumed that most values were re-
lated to artificial light.
After calibrating the satellite data against census re-

ports, we classified light values into three categories,
based on a quantile approach commonly used as a prag-
matic criterion by which to define low, medium, and
high risk of exposure [41]. The first quantile represents
low risk, because few people are exposed in those areas;
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the second quantile is moderate risk; and the third quan-
tile is high risk, as this class includes rabies-suitable cells
with highest human density. To validate whether points
falling in specific night-time light values could predict
the human density category assigned to that light value,
we generated 350 random points across the study area,
and used a cumulative binomial test with the number of
random points as trials, points with correct prediction of
light value and human density as successes, and 1/3 (the
chance of falling in the correct human density category)
as the probability of a success.

Results
Validation of input data
A total of 353 bat-rabies occurrences during 2002–2011
overlapped with the calibration area (see Additional file 1).
When models were transferred to the validation area, only
one of 46 validation occurrences from 2012 was not pre-
dicted successfully (Additional file 1); this was statistically
better than random predictions (P < 0.001; Table 1). This
result indicated good performance of Maxent models
across time, geographic areas, and environments. The most
informative variables in model calibration were mean NDVI
values for winter and spring, followed by maximum and
minimum values in winter; least informative were mini-
mum NDVI values for fall and summer.
When occurrences from calibration and validation areas

(see Figure 3) were displayed in environmental space, they
showed high overlap (Additional file 2). The NicheA algo-
rithm uses geographic occurrences to collect environmen-
tal values, thus, analysis are based on environmental
values only, excluding the geographic coordinates; this
allowed us to display occurrences from different calibra-
tion and validation areas and distinct NDVI periods in a
common environmental space (Figure 3 and Additional
file 2). The ellipsoid of the occurrences and environments
from 2002–2011 data in calibration regions was 35% lar-
ger compared to the volume of the ellipsoid of the occur-
rences and environments in validation areas, from 2012
(green ellipsoid in Additional file 2). Thus occurrences
from the calibration areas encompassed larger environ-
mental variation than those available in the validation
Table 1 Statistical validation of rabies model performance usin
2012

Cumulative binomial test

Pixels
predicted
present

Pixels
predicted
absent

Number of occurre
predicted present

Validation of
input data

20 859 61 458 45

ENM projection
across Chile

15 532 60 630 113

*min =minimum AUC ratio from 1000 permutations.
*max =maximum AUC ratio from 1000 permutations.
areas (Additional file 2), which makes sense in light of the
greater latitudinal diversity in the calibration subsets.
These model validation exercises support the idea that se-
lected environmental variables, study area delimitation,
and available occurrences allow us to generate a robust
ENM at a national extent.
ENM projection across Chile
To generate a high-confidence bat-borne rabies risk map at
the country extent, we examined environmental variables
across the country. Large geographic areas showed low var-
iations in NDVI values across seasons: a large number of
cells had consistently low NDVI values (500–1500), reflect-
ing arid conditions in northern Chile, while the number of
cells with very low (water) or very high (forest) NDVI
values varied seasonally. The validation occurrences were
predicted correctly by the model better than chance expec-
tations, with all AUC ratio values above 1.0 (P < 0.001;
Table 1). Considering the robust model validation results,
we developed a niche model using all occurrences and all
positive counties, and transferred model rules to the entire
country (Additional file 3). The resulting model identified
approximately 25 000 km2 suitable for bat-borne rabies oc-
currence, concentrated in coastal areas of central Chile.
Mapping human risk
We found a strong non-linear association between hu-
man density and average night-time light intensity by
county (r2 = 0.83, P < 0.001; Additional file 4). Conse-
quently, we used this imagery to classify potential distri-
bution of rabies obtained through ENM into areas of
low (0–4 people/km2), moderate (4–10 people/km2), and
high (10–255 people/km2) risk. As a result, ~8600 km2

were classified as high risk (Figure 4). Large areas of
high risk were located close to the foothills of the Andes
Mountains (Figure 4). During the development of this
study, the first case of human rabies reported in the last
17 years was confirmed in Quilpue county, Valparaiso
region, in an area classified as high risk with our meth-
odology (Figure 4).
g external occurrences and validation areas, Chile, 2002–

Partial ROC

nces Number of occurrences
predicted absent

Binomial
probability

AUC ratio
min - max*

1 5.09 × 10−23 1.52 - 1.87

27 1.10 × 10−52 1.10 - 1.62



Figure 4 Classification of areas at low (gray), moderate (pink), and high (red) risk of rabies transmission to humans. Political boundaries
at state level (region) are labeled for the northern (left panel), central (middle panel), and southern Chile (right panel). Insert: the last case of
human rabies reported in Valparaiso in July, 2013 (green point).
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Discussion
The most densely populated areas, in central Chile, are
suitable for bat-borne rabies. We identified a subset of
four environmental variables (from seasonal NDVI data)
that contained most of the information by which to pre-
dict rabies distribution at the national scale. These four
variables summarize approximately 2400 days of satellite
data compilation. Ecological niche models generated
using few climatic variables usually generate broad geo-
graphic predictions, however, our models avoided over-
prediction, perhaps thanks to the heterogeneous values
across the study area and reduced spatial autocorrelation
provided by NDVI [42].
Using 12 NDVI layers, we found that NDVI values in

winter have a particular impact in model performance.
Previously reported evidence of reduction in rabies reports
in the winter season in Chile [19] could reflect migration
or decrease in bat activity. Characterization of vegetation
values that shape aspects of the species’ niche in environ-
mental space could be used to predict changes in species
geographic distributions once vegetation changes occur,
for example anticipating disease emergence after land-
scape disturbance (e.g., logging). To our knowledge, only
one previous study explored the ability of ENM to antici-
pate disease occurrence using different time periods of
vegetation indices over different geographic areas [43]: po-
tential distribution of West Nile virus (WNV) in central
United States was evaluated using vegetation indices and
disease occurrence for 2002 and 2003, demonstrating that
models calibrated in different geographic areas and time
periods could anticipate human cases of WNV.
Ecological niche modeling in epidemiology
Linking species’ distributions to environmental factors has
been an important goal in ecology for a century [44].
Recent developments in the field of ecological niche mod-
eling have provided conceptual bases to select algorithms,
delimit study areas, evaluate models, and identify relevant
environmental variables [16,45-50]. This study applied
theory and methods from the field of ecology into epi-
demiology to map potential bat-borne rabies risk.
Current methods to generate risk maps of infectious dis-

eases are usually based on disease-occurrences density.
This approach estimates risk based solely on spatial inter-
polations [51], but such estimation may fail to anticipate
risk in neglected areas (i.e., lack of surveillance) [52] or
may assume high risk in oversampled areas [51]. On the
other hand, we argue that maps based on environmental
interpolations to model the pathogen’s ecological niche
provide more accurate, and biologically realistic, predic-
tions [53]. This ecological approach offers the opportunity
to identify areas where the pathogen could be more abun-
dant and genetically diverse based on suitable conditions
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[54,55]. Strikingly, despite its robustness, ecological niche
modeling is still under-exploited in epidemiology [56].
ENM applications to infectious diseases are generally

more complex than biodiversity studies [15]. Disease
systems usually include several organisms: pathogens,
vectors, natural reservoirs, and potential terminal hosts
(e.g., humans), making application of ENM dependent
on the target organisms, and on temporal and spatial
scales [15]. The rabies system is clearly an example of
spatial dependence and variation of environmental fac-
tors required by the virus for its persistence. At a very
fine, sub-organismal scale, rabies virus shows affinity to
the nervous system compared to all tissues available in
the host, but with special preference for the brainstem
and medulla [1]. At the other extreme of the spatial scale
(i.e., continental), rabies responds to climate [14], reflect-
ing how environments relate with all the participants in
the system (the black box sensu Peterson [13]). Our pre-
vious exploration of ecological niche similarities between
host and virus in the rabies system suggests that co-
evolutionary forces may explain the close interaction
between both organisms, represented in the indistinguish-
able occupancy of the environmental space by host and
virus when explored at landscape scale [37]. Thus, species
occupying the niche of another species (e.g., a parasite)
may generate indistinguishable niche models between
both species (i.e., the parasite and the host). Modeling ra-
bies and bats generates indistinguishable niches, but mod-
eling solely rabies provides more detail in the areas
predicted suitable, gaining the prediction of risk [37].
Here, we focused our modeling at intermediate spatial

resolution, fitting the spatial extent and available occur-
rences to remote sensing variables, but models at finer
resolutions should be explored (e.g., free-ranging dog
density, human behavior, bat abundance) to evaluate risk
of rabies spillover in Chile. An area of ~8600 km2 was
classified as at high risk of rabies occurrence, represent-
ing 1.1% of the total area of Chile (756 096 km2). This
result provides a useful identification of priority areas.

Model validation
Our validation design using different calibration and valid-
ation areas ensures statistical independence [57]. Valid-
ation is a crucial step in spatial epidemiology, especially
for virulent pathogens such as rabies [42,56]. Unfortu-
nately, in many applications of ENM to disease systems,
validation procedures have been weak or even lacking
[58-61]. Our assertive anticipation of rabies cases in inde-
pendent validation areas is an example of how ENM of
rabies may forecast rabies occurrence in unsampled areas,
once the model is transferred to areas that lack data.
Under the same approach, model transfer could be ap-
plied to future land-use change scenarios to predict rabies
distribution under different NDVI values. The idea of an
increase in rabies spread due to land-use change was pro-
posed in previous reports of rabies in vampire bats
[62-64], but has not been explored quantitatively in much
detail until now. Our conservative model transfer settings
avoided extrapolation into novel environmental conditions
while allowing robust predictions into distinct NDVI data-
sets (i.e., 2012). Using extrapolation in ENM exercises
generates perilous overprediction [29].
No set rules exist for selecting validation areas and oc-

currences. Rather, selection should be based on careful
consideration of the data available and the biogeographic
features of the accessible area selected a priori for the tar-
get species [17,65]. Selection of validation occurrences
outside of areas used for model calibration (e.g., Figure 3)
increases the geographic independence of validation oc-
currences from those used for calibration [42]. Model cali-
bration should be developed using only areas with known
disease occurrence, as this offers a means of reducing
sampling bias, allowing detailed characterization of envi-
ronments for rabies occurrences and avoiding uncertainty
from non-sampled areas [35]. We calibrated the final
model only in municipalities with known reports of rabies
occurrences and found that focusing ENM calibration
only in areas with surveillance reduces over-prediction
and increases model accuracy (Additional file 3), albeit po-
tentially at the cost of precision [36]. Consideration of
sampling bias is an issue of critical relevance when model-
ing the niche of pathogens. Our preliminary exploration
of model response when negative samples were added to
the analysis showed that models reduced their variability,
but without significant improvement of areas predicted
[37]. Thus, bias from the geographic space (e.g., clustered
occurrences), should be considered different from the bias
from the environmental space. To make it simple, we
could have an intense and uniform sampling effort across
a large area, but the environmental representation may be
minimal (e.g., thousands of occurrences in a desert could
represent a single environmental value). On the other
hand, we could have a low geographic coverage (i.e., few
occurrence points), but these points capture the complete
pattern of environmental signature that shapes the species
distribution. In our study, even though rabies occurrences
from urbanized areas were abundant, occurrences from
non-urbanized areas allowed us to generate models with
high predictive performance (Figure 3, Additional files 1
and 2). However, a well-designed sampling effort may pro-
vide more environmental information from areas not
available to us, generating models with broader areas pre-
dicted suitable for bat-borne rabies occurrence.
In summary, our validation experiments confirmed

that the ENM used in epidemiology can produce a ro-
bust risk map of a dangerous disease when occurrence
data quality, environmental variable manipulation, and
study area extent are considered carefully. As a result of
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these analyses, government efforts to ward prevention
and control can focus in geographic areas most suitable
for rabies potential distribution.

Additional files

Additional file 1: Validation of rabies prediction for central Chile in
2012, generated based on data from 2002–2011 in northern and
southern Chile. Occurrences and environments from 2002–2011 (yellow
squares) were used for model calibration (black scale). The model
transferred to 2012 environments (dashed line; validation area) showed
correct prediction of occurrences from 2012 (green points), with one
exception (black triangle).

Additional file 2: Niche models from different areas validated in
environmental space using NicheA. Calibration occurrences, areas, and
environments (red; calibration in Figure 3) and validation occurrences,
area, and environments (green; validation in Figure 3) are displayed in
the environmental space. Background is represented by NDVI values for
2012 (gray points). Notice that the two ellipsoids overlap completely
(100%).

Additional file 3: Ecological niche modeling using occurrences and
seasonal NDVI values from all data available (2002 to 2012). The
model was calibrated in all positive counties (blue polygons), and
transferred to a national extent (left) to estimate the rabies potential
distribution, shown in red.

Additional file 4: Association between human density and night-time
light values. Values of mean night-time light values (0–255) and human
population (people/km2) by county (black circles). Our local polynomial
regression model (LPR) estimated values shown as red circles (r2 = 0.83;
P < 0.001). Night-time light imagery has been used to describe features
of human settlements such as human density and social and economic
parameters [66-68]. Despite open access to these data and powerful
software available for their analysis, exploration of this source of
information is scarce. A notable exception is a recent study of measles
[69]. However, it must be borne in mind that in epidemiology, night-time
light data have several limitations: (i) application of night-time light imagery
is temporally and spatially dependent, such that its use must include
validation of predictive relationships to variables of interest in each study
case; (ii) light values in remote areas may be the product of fire, biasing
estimates of human settlements; (iii) industrial areas with high human
density may show low light values at night, underestimating numbers at risk;
and (iv) models using remote sensing data to estimate human population
may overestimate areas with low population, which may indicate that very
isolated light spots are unreliable predictors of population. To correct the latter,
some techniques include delimiting urban areas [70], but such methods miss
the point of our risk classification.
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