2,563 research outputs found

    DISCUSSION PAPER: PRACTICAL METHODS

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73424/1/j.1749-6632.1975.tb53360.x.pd

    Investigation of Exoskeletal Engine Propulsion System Concept

    Get PDF
    An innovative approach to gas turbine design involves mounting compressor and turbine blades to an outer rotating shell. Designated the exoskeletal engine, compression (preferable to tension for high-temperature ceramic materials, generally) becomes the dominant blade force. Exoskeletal engine feasibility lies in the structural and mechanical design (as opposed to cycle or aerothermodynamic design), so this study focused on the development and assessment of a structural-mechanical exoskeletal concept using the Rolls-Royce AE3007 regional airliner all-axial turbofan as a baseline. The effort was further limited to the definition of an exoskeletal high-pressure spool concept, where the major structural and thermal challenges are represented. The mass of the high-pressure spool was calculated and compared with the mass of AE3007 engine components. It was found that the exoskeletal engine rotating components can be significantly lighter than the rotating components of a conventional engine. However, bearing technology development is required, since the mass of existing bearing systems would exceed rotating machinery mass savings. It is recommended that once bearing technology is sufficiently advanced, a "clean sheet" preliminary design of an exoskeletal system be accomplished to better quantify the potential for the exoskeletal concept to deliver benefits in mass, structural efficiency, and cycle design flexibility

    Sizing up Helen Nonviolent physical risk-taking enhances the envisioned bodily formidability of women.

    Get PDF
    Abstract Men are more prone than women to both commit physical violence and engage in nonviolent activities entailing the risk of injury or death. The Crazy Bastard Hypothesi

    Basins of attraction on random topography

    Full text link
    We investigate the consequences of fluid flowing on a continuous surface upon the geometric and statistical distribution of the flow. We find that the ability of a surface to collect water by its mere geometrical shape is proportional to the curvature of the contour line divided by the local slope. Consequently, rivers tend to lie in locations of high curvature and flat slopes. Gaussian surfaces are introduced as a model of random topography. For Gaussian surfaces the relation between convergence and slope is obtained analytically. The convergence of flow lines correlates positively with drainage area, so that lower slopes are associated with larger basins. As a consequence, we explain the observed relation between the local slope of a landscape and the area of the drainage basin geometrically. To some extent, the slope-area relation comes about not because of fluvial erosion of the landscape, but because of the way rivers choose their path. Our results are supported by numerically generated surfaces as well as by real landscapes

    Spectral line survey of the ultracompact HII region Mon R2

    Full text link
    Ultracompact (UC) HII regions constitute one of the earliest phases in the formation of a massive star and are characterized by extreme physical conditions (Go>10^5 Habing field and n>10^6 cm^-3). The UC HII Mon R2 is the closest one and therefore an excellent target to study the chemistry in these complex regions. We carried out a 3mm and 1mm spectral survey using the IRAM 30-m telescope towards three positions that represent different physical environments in Mon R2: (i) the ionization front (IF) at (0",0"); two peaks in the molecular cloud (ii) MP1 at the offset (+15",-15") and (iii) MP2 at the farther offset (0",40"). In addition, we carried out extensive modeling to explain the chemical differences between the three observed regions. We detected more than thirty different species. We detected SO+ and C4H suggesting that UV radiation plays an important role in the molecular chemistry of this region. We detected the typical PDR molecules CN, HCN, HCO, C2H, and c-C3H2. While the IF and the MP1 have a chemistry similar to that found in high UV field and dense PDRs like the Orion Bar, the MP2 is more similar to lower UV/density PDRs like the Horsehead nebula. We also detected complex molecules that are not usually found in PDRs (CH3CN, H2CO, HC3N, CH3OH and CH3C2H). Sulfur compounds CS, HCS+, C2S, H2CS, SO and SO2 and the deuterated species DCN and C2D were also identified. [DCN]/[HCN]=0.03 and [C2D]/[C2H]=0.05, are among the highest in warm regions. Our results show that the high UV/dense PDRs present a different chemistry from that of the low UV case. Abundance ratios like [CO+]/[HCO+] or [HCO]/[HCO+] are good diagnostics to differentiate between them. In Mon R2 we have the two classes of PDRs, a high UV PDR towards the IF and the adjacent molecular bar and a low-UV PDR which extends towards the north-west following the border of the cloud.Comment: 31 page

    Weapons Make the Man (Larger): Formidability Is Represented as Size and Strength in Humans

    Get PDF
    In order to determine how to act in situations of potential agonistic conflict, individuals must assess multiple features of a prospective foe that contribute to the foe's resource-holding potential, or formidability. Across diverse species, physical size and strength are key determinants of formidability, and the same is often true for humans. However, in many species, formidability is also influenced by other factors, such as sex, coalitional size, and, in humans, access to weaponry. Decision-making involving assessments of multiple features is enhanced by the use of a single summary variable that encapsulates the contributions of these features. Given both a) the phylogenetic antiquity of the importance of size and strength as determinants of formidability, and b) redundant experiences during development that underscore the contributions of size and strength to formidability, we hypothesize that size and strength constitute the conceptual dimensions of a representation used to summarize multiple diverse determinants of a prospective foe's formidability. Here, we test this hypothesis in humans by examining the effects of a potential foe's access to weaponry on estimations of that individual's size and strength. We demonstrate that knowing that an individual possesses a gun or a large kitchen knife leads observers to conceptualize him as taller, and generally larger and more muscular, than individuals who possess only tools or similarly mundane objects. We also document that such patterns are not explicable in terms of any actual correlation between gun ownership and physical size, nor can they be explained in terms of cultural schemas or other background knowledge linking particular objects to individuals of particular size and strength. These findings pave the way for a fuller understanding of the evolution of the cognitive systems whereby humans – and likely many other social vertebrates – navigate social hierarchies
    • …
    corecore