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Reductions in commuting mobility correlate with
geographic differences in SARS-CoV-2 prevalence
in New York City
Stephen M. Kissler 1,11, Nishant Kishore 2,11, Malavika Prabhu3,11, Dena Goffman4,11, Yaakov Beilin5,6,11,

Ruth Landau7, Cynthia Gyamfi-Bannerman4, Brian T. Bateman8, Jon Snyder3, Armin S. Razavi 3, Daniel Katz5,6,

Jonathan Gal5, Angela Bianco6, Joanne Stone6, Daniel Larremore 9,10, Caroline O. Buckee 2 &
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SARS-CoV-2-related mortality and hospitalizations differ substantially between New York

City neighborhoods. Mitigation efforts require knowing the extent to which these disparities

reflect differences in prevalence and understanding the associated drivers. Here, we report

the prevalence of SARS-CoV-2 in New York City boroughs inferred using tests administered

to 1,746 pregnant women hospitalized for delivery between March 22nd and May 3rd, 2020.

We also assess the relationship between prevalence and commuting-style movements into

and out of each borough. Prevalence ranged from 11.3% (95% credible interval [8.9%,

13.9%]) in Manhattan to 26.0% (15.3%, 38.9%) in South Queens, with an estimated city-

wide prevalence of 15.6% (13.9%, 17.4%). Prevalence was lowest in boroughs with the

greatest reductions in morning movements out of and evening movements into the borough

(Pearson R=−0.88 [−0.52, −0.99]). Widespread testing is needed to further specify

disparities in prevalence and assess the risk of future outbreaks.
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Pronounced geographic differences in hospitalization and
mortality rates have emerged as a hallmark of the ongoing
SARS-CoV-2 pandemic. In New York City, the epicenter of

the SARS-CoV-2 epidemic in the United States, deaths and
hospitalizations per capita due to COVID-19 were nearly twice as
high in the Bronx as in neighboring Manhattan as of 25 April
20201. To the extent that this variation reflects the cumulative
incidence of SARS-CoV-2 infections, there may be wide dis-
parities in exposure to the novel coronavirus across New York
City. Furthermore, if exposure leads to protection from re-
infection, substantial levels of immunity may have already
accrued in some areas of the city, while other neighborhoods may
still be susceptible to a major outbreak. Understanding this risk
landscape is key for informing plans to responsibly resume
commerce in the coming months.

The local prevalence of SARS-CoV-2 infection depends on a
number of factors, including the patterns of contacts among
people within and between communities. Physical distancing
interventions, including the “New York State on PAUSE”
executive order starting 22 March2, have dramatically changed
the behaviors that drive these contacts. COVID-19 hospitalization
and mortality rates are an imperfect proxy of prevalence, since
these measures also depend on access to care, age, social deter-
minants of health, and the rates of underlying medical conditions
as well as non-disease-related phenomena such as hospital
overload. Measuring the prevalence of SARS-CoV-2 infection has
been difficult because tests are generally only administered for
patients with presumed COVID-19 illness, leaving mild, asymp-
tomatic, and presymptomatic cases uncounted. Imperfect test
sensitivity adds an additional layer of complexity to extrapolating
the results of SARS-CoV-2 tests to the general population.

Here, we report that SARS-CoV-2 prevalence varied sub-
stantially between New York City boroughs between 22 March
and 3 May 2020. These differences in prevalence correlate with
antecedent reductions in commuting-style mobility between the
boroughs. Our findings are based on quantitative polymerase-
chain-reaction SARS-CoV-2 tests administered to 1746 women
hospitalized for delivery and aggregated mobility data from the
Facebook Data for Good initiative. These findings underscore the
need to support neighborhoods unable to fully comply with social
distancing interventions with enhanced contact tracing, protec-
tive equipment, and other interventions aimed at reducing
transmission.

Results
SARS-CoV-2 prevalence varies between New York City bor-
oughs. To estimate SARS-CoV-2 prevalence by New York City
borough, we analyzed SARS-CoV-2 test results administered
universally with informed consent to 2011 pregnant women
admitted for delivery at four NewYork—Presbyterian Hospital
campuses (Columbia University Irving Medical Center/NYP—
CUIMC, Weill Cornell Medical Center/NYP—WCM, Lower
Manhattan Hospital/NYP—LMH, and Queens Hospital/NYP—
Queens), Mount Sinai Hospital (MSH), and Mount Sinai West
(MSW) Hospital between 22 March and 3 May 2020. NYP—
CUIMC tests included those from NYP—Morgan Stanley Chil-
dren’s Hospital and NYP-Allen Hospital. We excluded tests from
women with a ZIP code outside of New York City (n= 251) or in
Staten Island (n= 14) due to the small sample size from that
borough, leaving tests from 1746 women (Table 1). Consistent
with a recent report3, 244 (14.0%) of the women tested positive
for SARS-CoV-2. Of these, 55 (22.5%) reported symptoms
including fever, cough, sore throat, chills, malaise, chest pain,
shortness of breath, anosmia, or hyposmia. We combined these
data with high-volume mobility data4 from Facebook users

capturing the number of daily trips made into and out of each
borough to assess how changes in individuals’movement patterns
may have contributed to geographic variation in SARS-CoV-2
prevalence.

Each SARS-CoV-2 test record was assigned to a borough on
the basis of the three-digit prefix of the patient’s ZIP
code (Supplementary Table 1)5. To improve the spatial resolu-
tion, we separated Queens, the largest borough by land area, into
North and South regions, delineated by the New York State
Department of Health’s neighborhood designations of North/
Northeast/Northwest/West/West Central/Central and Jamaica/
Rockaways/Southeast/Southwest, respectively (Supplementary
Table 1)5. The percentage of tests positive for SARS-CoV-2
ranged from 10.0% (72/718) in Manhattan to 22.4% (13/58) in
South Queens (Supplementary Table 2). We used a statistical
framework6,7 to estimate the population prevalence of SARS-
CoV-2 infection by borough accounting for imperfect test
sensitivity, which has been reported as low as 70%8 (Fig. 1a, Sup-
plementary Table 3). This framework estimates a Bayesian
posterior distribution for the prevalence of infection in a
population accounting for the size of the sample and imperfect
test sensitivity. For example, a naïve estimate of the population
prevalence given a sample of 10 positive and 90 negative tests
might be 10%, but if the test has imperfect sensitivity, one would
expect some of the 90 negative tests to actually be COVID-19
positive. The estimate of population prevalence needs to be
adjusted upward accordingly. Conservatively estimating a test
sensitivity of 90%, the mean estimated population prevalence of
SARS-CoV-2 infection in Manhattan (11.3%, 95% credible
interval (CI) [8.9%, 13.9%]) was substantially lower than in the
Bronx (20.8%, [16.2%, 25.7%]) and South Queens (26.0%, [15.3%,
38.9%]) during the study period. Differences were not affected by
assumed 80 and 70% sensitivity (Supplementary Table 3).

Table 1 Characteristics of the study population.

Category N %

Total 1746 100
Site

NYP—CUIMC 385 22.1
NYP—LMH 137 7.9
NYP—Queens 178 10.2
NYP—WCM 290 16.6
MSH 428 24.5
MSW 328 18.8

SARS-CoV-2 test result
Positive 244 14.0
Negative 1502 86.0

Borough
Bronx 309 17.7
Brooklyn 386 22.1
Manhattan 718 41.1
North Queens 275 15.8
South Queens 58 3.3

Age
15–19 21 1.2
20–24 167 9.6
25–29 346 19.8
30–34 588 33.7
35–39 470 26.9
40–44 139 8.0
45–49 13 0.7
50–54 2 0.1

NYP—CUIMC New York Presbyterian Columbia University Irving Medical Center, NYP—WCM
Weill Cornell Medical Center, NYP—LMH Lower Manhattan Hospital, NYP—Queens Queens
Hospital, MSH Mount Sinai Hospital, MSW Mount Sinai West.
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Estimating the mean prevalence of SARS-CoV-2 infection in New
York City using the data aggregated across all boroughs (15.6%,
[13.9%, 17.4%]; Fig. 1a, black line) would mask these substantial
geographic differences. A frequentist analysis of the same data
confirms a significant difference in prevalence between boroughs
(Chi Sq. test, p= 0.00048). The estimated prevalence of infection
remained roughly constant over time (Fig. 1b) within statistical
uncertainty (Chi Sq. test, p= 0.29), though the trends hint that

prevalence in the city as a whole may have risen until the week of
30 March and then tapered and leveled.

SARS-CoV-2 prevalence correlates with reduced mobility. To
assess the possible relationship between variable reductions in
between-borough movements and the subsequent prevalence of
infection, we used mobility data provided by Facebook’s Data for

a

b

0 20 40

Estimated prevalence (%)

P
ro

ba
bi

lit
y 

de
ns

ity

Borough

Bronx

Brooklyn

Manhattan

North Queens

South Queens

Overall

10 30 50

M
ar

 1
6

M
ar

 2
3

M
ar

 3
0

Apr
 0

6

Apr
 1

3

Apr
 2

0

Apr
 2

7

M
ar

 1
6

M
ar

 2
3

M
ar

 3
0

Apr
 0

6

Apr
 1

3

Apr
 2

0

Apr
 2

7

Week

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

E
st

im
at

ed
 p

re
va

le
nc

e 
(%

)

South Queens Overall

Manhattan North Queens

Bronx Brooklyn

Fig. 1 Posterior prevalence of SARS-CoV-2 infection by New York City borough. a Posterior distribution of SARS-CoV-2 prevalence by borough (colors)
and overall (black) across the study period. bWeekly mean posterior prevalence of SARS-CoV-2 infection by borough with 95% credible intervals. For both
panels, the test was assumed to have perfect specificity and 90% sensitivity. There were no recorded SARS-CoV-2 tests from patients with Queens ZIP
codes during the week of 16 March. Source data, including sample sizes by week and borough, are listed in Supplementary Table 3 and provided as a
Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18271-5 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4674 | https://doi.org/10.1038/s41467-020-18271-5 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Good program4. The data represent a cohort of ~1 million
Facebook users in the New York City area who have location
services enabled on their mobile device. The data provide 8-h
snapshots of the number of transitions that occurred between
~1.2-km2 patches in New York City. A transition is defined as a
directional vector starting at the location where an individual
spent the majority of their time during the preceding 8-h window
of time and ending at the location where the same individual
spent a majority of their time during the current 8-h window of
time. We aggregated these data by borough and time of day
(morning vs. evening, or 4 a.m. to 12 p.m. vs. 12 p.m. to 8 p.m.)
and calculated the number of morning transitions out of each
borough and evening transitions into each borough during the
study period (22 March through 3 May) to approximate work-
related commuting. We compared these values to the number of
analogous transitions that occurred during the 45-day period
preceding 26 February 2020, conditional on the day of the week
and time of day. We chose to assess commuting between bor-
oughs as opposed to within-borough movements because move-
ments within a borough or neighborhood could include a variety
of activities consistent with social distancing, whereas commuting
between boroughs is likely to be associated with work and is
therefore likely to be a good indicator of an inability to engage in
social distancing. Furthermore, we chose to assess changes in
movements rather than the absolute number of trips since the

data only capture a person’s “modal” location (the location where
they spent the most time during an 8-h interval), making the data
better suited to summarizing changes in bulk movements rather
than fine-scale interpersonal mixing patterns. The magnitude of
the reduction in commuting movements between boroughs ran-
ged from 41.4% in South Queens to 68.7% in Man-
hattan (Supplementary Table 4). The mean estimated prevalence
of SARS-CoV-2 infection by borough was strongly inversely
correlated with the reduction in commuting movements (Pearson
R=−0.88, [−0.52, −0.99]) in each borough (Fig. 2). The rela-
tionship was similar with commuting movements in the reverse
direction, i.e., the number of movements into each borough in the
morning and out of each borough in the evening (Supplementary
Fig. 3). The relationship between prevalence and changes in
within-borough movements was not significant, as hypothesized
(Supplementary Fig. 1, Supplementary Fig. 2). The mean and 95%
CI for the Pearson correlation coefficient were calculated by
drawing from each borough’s posterior prevalence distribution
(Fig. 1a) 10,000 times and recalculating the coefficient for each
set. In a sensitivity analysis, we assessed the relationship between
estimated SARS-CoV-2 prevalence and different metrics of
movement including within-borough movement (Supplementary
Fig. 1), total movement (Supplementary Fig. 2), reverse
commuting-type movements (Supplementary Fig. 3), and total
movements in/out of each borough (Supplementary Fig. 4). All
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relationships were weaker than the relationship between esti-
mated prevalence and commuting-type movements.

Discussion
The prevalence of SARS-CoV-2 infection between 22 March and
3 May 2020 differed substantially between New York City bor-
oughs and was related to reductions in daytime commuting-style
movements into and out of each borough relative to the previous
2 months. The estimated prevalence in Manhattan was sub-
stantially lower than in Queens and the Bronx, consistent with
geographic differences in cumulative hospitalizations and mor-
tality1. The variations in mobility across neighborhoods likely
depended on factors including the distribution of essential
workers and of resources to support distancing. If the differences
in prevalence correlate with differences in population immunity,
Manhattan may remain at higher risk of a major resurgence than
the other boroughs as social distancing measures are relaxed,
particularly when people who have left the city during the lock-
down return.

Our findings are subject to a number of limitations. Women
hospitalized for delivery may not be representative of the
population9,10. Pregnancy may also dampen the immune
response to the virus11, possibly leading to a different duration of
infection and therefore a biased representation of SARS-CoV-2
infection in pregnant women vs. the rest of the population. We
have used mobility data as a proxy for physical distancing, but the
mobility data do not perfectly capture the interpersonal contacts
that underlie the transmission of SARS-CoV-2, nor do they
necessarily capture the demographics of the women tested here
for SARS-CoV-2. A direct causal link between physical distancing
and the reduction in transmission cannot be drawn, because the
ability to physically distance may also be related to age, income,
type of employment, type of housing, and other factors that could
independently modulate risk of infection. In addition, just as the
prevalence of infection in the boroughs is more heterogeneous
than the aggregate prevalence across New York City would sug-
gest, there may be substantial geographic heterogeneity in pre-
valence within boroughs that is not captured in our study.

In conclusion, mobility patterns consistent with commuting
correlate with the prevalence of SARS-CoV-2 infection in New
York City boroughs. Large parts of the city may remain at risk for
substantial SARS-CoV-2 outbreaks. These results highlight the
need to provide greater support to neighborhoods unable to
comply with social distancing interventions and that widespread
SARS-CoV-2 testing remains key for assessing geographic dis-
parities in infection prevalence, allowing for more tailored
interventions and a better assessment of the risk of additional
outbreaks.

Methods
Study design. Quantitative polymerase-chain-reaction SARS-CoV-2 tests were
administered uniformly to 2011 women hospitalized for delivery between 22 March
and 3 May or some subset thereof (see Error! Reference source not found.) at
Columbia University Irving Medical Center/NYP—CUIMC, Weill Cornell Medical
Center/NYP—WCM, Lower Manhattan Hospital/NYP—LMH, and Queens Hos-
pital/NYP—Queens, MSH, and MSW hospital. Clinical samples were obtained
using a nasopharyngeal swab, which was performed upon admission. All women
were also screened for symptoms consistent with COVID-19.

Mobility data. The percent change in commuting-style movements between
boroughs was assessed using data provided by Facebook’s Data for Good program4.
The data use agreement permits the analysis and representation of changes in
movements over time but not raw numbers of movements. The data represent a
cohort of ~1 million Facebook users in the New York City area who have location
services enabled on their mobile device. The data provide 8-h snapshots of the
number of transitions that occurred between ~1.2-km2 patches in New York City.
A transition is defined as a directional vector starting at the location where an
individual spent the majority of their time during the preceding 8-h window of

time and ending at the location where the same individual spent a majority of their
time during the current 8-h window of time. For each borough and period of the
day (morning: 4 a.m. to 12 p.m.; evening: 12 p.m. to 8 p.m.; night: 8 p.m. to 4 a.m.),
we calculated the number of transitions out of and into each borough during the
study period (22 March through 3 May). We compared these values to the number
of analogous transitions that occurred during the 45-day period preceding 26
February 2020, conditional on the day of the week and time of day. The changes in
mobility are calculated with respect to the same cohort during the pre-pandemic
and pandemic periods, so that changes in the population sizes of the boroughs (e.g.,
due to people leaving the city during the pandemic) are implicitly accounted for.
For the main analysis, we restricted our attention to morning movements out of
boroughs and evening movements into boroughs, which represent commuting-
style movements.

Statistical analysis. The Bayesian posterior prevalence of SARS-CoV-2 infection
in the population was estimated using a procedure developed to estimate infection
prevalence from representative samples of limited size obtained using tests with
imperfect sensitivity6. An online calculator is available7. The correlation between
posterior population prevalence of infection and percent decline in mobility was
computed using standard linear regression. The mean and 95% CI for the Pearson’s
correlation coefficient were calculated by sampling 10,000 times from the posterior
prevalence distributions for each borough and recalculating the correlation. The
analysis was conducted in R version 3.6.212. Code is available at https://github.com/
gradlab/COVID_NYC.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper13 and may be found at https://github.com/
gradlab/COVID_NYC (https://doi.org/10.5281/zenodo.3967753). Testing data are also
listed in Supplementary Table 2.

Code availability
Code for this analysis is available at https://github.com/gradlab/COVID_NYC13 (https://
doi.org/10.5281/zenodo.3967753).
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