165 research outputs found

    Determinants of the essential one-carbon metabolism metabolites, homocysteine, S-adenosylmethionine, S-adenosylhomocysteine and folate, in cerebrospinal fluid

    Get PDF
    Background: Disturbances in the levels of one-carbon (1C) metabolism metabolites have been associated with a wide variety of neuropsychiatric diseases. Cerebrospinal fluid (CSF) levels of homocysteine (Hcy) and the other 1C metabolites, nor their interrelatedness and putative determinants, have been studied extensively in a healthy population. Methods: Plasma and CSF samples from 100 individuals free from neuropsychiatric diseases were analyzed (55 male, 45 female; age 50±17 years). In blood, we measured plasma Hcy, serum folate and serum vitamin B12. In CSF, we measured total Hcy, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and 5-methyltetrahydrofolate (5-methylTHF). Highly selective analytical methods like liquid chromatography combined with either mass spectrometry or fluorescence detection were used. Results: CSF Hcy was inversely correlated with CSF 5-methylTHF and positively with plasma Hcy, independent of serum folate status. CSF SAH correlated with age, lower CSF 5-methylTHF and higher CSF Hcy. CSF 5-methylTHF showed independent negative correlations with age and positive correlations with serum folate. CSF SAM did not correlate with any of the 1C metabolites. Conclusions: Aging is characterized by a reduction in CSF 5-methylTHF levels and increased CSF levels of the potentially neurotoxic transmethylation inhibitor SAH. CSF 5-methylTHF, which is itself determined in part by systemic folate status, is a powerful independent determinant of CSF levels of Hcy and SA

    Should vascular wall F-18-FDG uptake be adjusted for the extent of atherosclerotic burden?

    Get PDF
    Vascular wall 18F-FDG uptake is often used as a surrogate marker of atherosclerotic plaque inflammation. A potential caveat is that vascular wall 18F-FDG uptake is higher simply because more atherosclerosis is present. To determine if the degree of inflammation is high or low relative to the extent of atherosclerosis, vascular wall 18F-FDG uptake may require statistical adjustment for a non-inflammatory marker reflecting the extent of atherosclerosis, e.g. calcification. Adjustments is probably needed if (1) vascular wall 18F-FDG uptake correlates sufficiently strongly with arterial calcification and (2) adjustment for extent of calcification affects determinants of vascular 18F-FDG uptake. This study addresses these questions. 18F-FDG PET/low-dose-CT scans of 99 patients were used. Cardiovascular risk factors were assessed and PET/CT scans were analysed for standardized 18F-FDG uptake values and calcification. ANOVA was used to establish the association between vascular 18F-FDG uptake and calcification. Multiple linear regression (with and without calcification as independent variable) was used to show whether determinants of vascular 18F-FDG uptake were affected by the degree of calcification. 18F-FDG uptake was related to increased calcification in the aortic arch, descending and abdominal aorta. However, 18F-FDG uptake showed considerable overlap between categories of calcification. Age and body mass index were main determinants of vascular 18F-FDG uptake. In multiple regression analyses, most standardized beta coefficients of these determinants were not affected by adjustment for the degree of calcification. Although vascular 18F-FDG uptake is related to total atherosclerotic burden, as reflected by vascular calcification, the association is weak and unlikely to affect the identification of determinants of atherosclerotic inflammation implicating no need for adjustment in future studies

    Stwl Modifies Chromatin Compaction and Is Required to Maintain DNA Integrity in the Presence of Perturbed DNA Replication

    Get PDF
    Hydroxyurea, a well-known DNA replication inhibitor, induces cell cycle arrest and intact checkpoint functions are required to survive DNA replication stress induced by this genotoxic agent. Perturbed DNA synthesis also results in elevated levels of DNA damage. It is unclear how organisms prevent accumulation of this type of DNA damage that coincides with hampered DNA synthesis. Here, we report the identification of stonewall ( stwl) as a novel hydroxyurea-hypersensitive mutant. We demonstrate that Stwl is required to prevent accumulation of DNA damage induced by hydroxyurea; yet, Stwl is not involved in S/M checkpoint regulation. We show that Stwl is a heterochromatin-associated protein with transcription-repressing capacities. In stwl mutants, levels of trimethylated H3K27 and H3K9 ( two hallmarks of silent chromatin) are decreased. Our data provide evidence for a Stwl-dependent epigenetic mechanism that is involved in the maintenance of the normal balance between euchromatin and heterochromatin and that is required to prevent accumulation of DNA damage in the presence of DNA replication stress.</p

    Orthopedic surgery increases atherosclerotic lesions and necrotic core area in ApoE-/- mice

    Get PDF
    Background and aims Observational studies show a peak incidence of cardiovascular events after major surgery. For example, the risk of myocardial infarction increases 25-fold early after hip replacement. The acuteness of this increased risk suggests abrupt enhancement in plaque vulnerability, which may be related to intra-plaque inflammation, thinner fibrous cap and/or necrotic core expansion. We hypothesized that acute systemic inflammation following major orthopedic surgery induces such changes. Methods ApoE−/− mice were fed a western diet for 10 weeks. Thereafter, half the mice underwent mid-shaft femur osteotomy followed by realignment with an intramedullary K-wire, to mimic major orthopedic surgery. Mice were sacrificed 5 or 15 days post-surgery (n = 22) or post-saline injection (n = 13). Serum amyloid A (SAA) was measured as a marker of systemic inflammation. Paraffin embedded slides of the aortic root were stained to measure total plaque area and to quantify fibrosis, calcification, necrotic core, and inflammatory cells. Results Surgery mice showed a pronounced elevation of serum amyloid A (SAA) and developed increased plaque and necrotic core area already at 5 days, which reached significance at 15 days (p = 0.019; p = 0.004 for plaque and necrotic core, respectively). Macrophage and lymphocyte density significantly decreased in the surgery group compared to the control group at 15 days (p = 0.037; p = 0.024, respectively). The density of neutrophils and mast cells remained unchanged. Conclusions Major orthopedic surgery in ApoE−/− mice triggers a systemic inflammatory response. Atherosclerotic plaque area is enlarged after surgery mainly due to an increase of the necrotic core. The role of intra-plaque inflammation in this response to surgical injury remains to be fully elucidated. © 2016 Elsevier Ireland Lt

    The homocysteine controversy

    Get PDF
    Mild to moderate hyperhomocysteinemia has been identified as a strong predictor of cardiovascular disease, independent from classical atherothrombotic risk factors. In the last decade, a number of large intervention trials using B vitamins have been performed and have shown no benefit of homocysteine-lowering therapy in high-risk patients. In addition, Mendelian randomization studies failed to convincingly demonstrate that a genetic polymorphism commonly associated with higher homocysteine levels (methylenetetrahydrofolate reductase 677 C>T) is a risk factor for cardiovascular disease. Together, these findings have cast doubt on the role of homocysteine in cardiovascular disease pathogenesis, and the homocysteine hypothesis has turned into a homocysteine controversy. In this review, we attempt to find solutions to this controversy. First, we explain that the Mendelian randomization analyses have limitations that preclude final conclusions. Second, several characteristics of intervention trials limit interpretation and generalizability of their results. Finally, the possibility that homocysteine lowering is in itself beneficial but is offset by adverse side effects of B vitamins on atherosclerosis deserves serious attention. As we explain, such side effects may relate to direct adverse effects of the B-vitamin regimen (in particular, the use of high-dose folic acid) or to proinflammatory and proproliferative effects of B vitamins on advanced atherosclerotic lesions

    Plasma folate levels are associated with the lipoprotein profile: a retrospective database analysis

    Get PDF
    BACKGROUND: Several studies demonstrated an association of homocysteine plasma levels and the plasma lipoprotein profile. This cross-sectional pilot study aimed at analyzing whether blood levels of the two important cofactors of homocysteine metabolism, folate and vitamin B12, coincide with the lipoprotein profile. METHODS: In a retrospective single center approach, we analyzed the laboratory database (2003-2006) of the University Hospital Bonn, Germany, including 1743 individuals, in whom vitamin B12, folate and at least one lipoprotein parameter had been determined by linear multilogistic regression. RESULTS: Higher folate serum levels were associated with lower serum levels of low density lipoprotein cholesterol (LDL-C; Beta = -0.164; p < 0.001), higher levels of high density lipoprotein cholesterol (HDL-C; Beta = 0.094; p = 0.021 for trend) and a lower LDL-C-C/HDL-C-ratio (Beta = -0.210; p < 0.001). Using ANOVA, we additionally compared the individuals of the highest with those of the lowest quartile of folate. Individuals of the highest folate quartile had higher levels of HDL-C (1.42 +/- 0.44 mmol/l vs. 1.26 +/- 0.47 mmol/l; p = 0.005), lower levels of LDL-C (3.21 +/- 1.04 mmol/l vs. 3.67 +/- 1.10 mmol/l; p = 0.001) and a lower LDL-C/HDL-C- ratio (2.47 +/- 1.18 vs. 3.77 +/- 5.29; p = 0.002). Vitamin B12 was not associated with the lipoprotein profile. CONCLUSION: In our study sample, high folate levels were associated with a favorable lipoprotein profile. A reconfirmation of these results in a different study population with a well defined status of health, diet and medication is warranted

    No effect of epoprostenol on right ventricular diameter in patients with acute pulmonary embolism: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Right ventricular dilatation in the setting of acute pulmonary embolism is associated with an adverse prognosis. Treatment with a pulmonary vasodilator has never been studied systematically. We evaluated the effect of epoprostenol on right ventricular diameter and function in patients with acute pulmonary embolism and right ventricular dilatation.</p> <p>Methods</p> <p>In a randomized, single-blind study, 14 patients with acute pulmonary embolism received epoprostenol or placebo infusion for 24 hours on top of conventional treatment. Effects on right ventricular end-diastolic diameter, systolic pulmonary artery pressure, right ventricle fractional area changeand tricuspid annular plane systolic excursion were assessed by serial echocardiography. Furthermore Troponin T and NT-proBNP were measured serially.</p> <p>Results</p> <p>Compared to placebo, epoprostenol was associated with a relative change from baseline in right ventricular end-diastolic diameter of +2% after 2.5 hours and -8% after 24 hours. Epoprostenol did not have a significant effect on systolic pulmonary artery pressure, right ventricular fractional area change and tricuspid annular plane systolic excursion, nor on biochemical parameters.</p> <p>Conclusion</p> <p>In patients with acute pulmonary embolism and right ventricular overload, treatment with epoprostenol did not improve right ventricular dilatation or any other measured variables of right ventricular overload.</p> <p>Trial Registration</p> <p><it>Registration</it>: URL: NCT01014156</p> <p><it>Medical ethical committee</it>: Medisch-ethische toetsingscommissie (METc) from the VUmc (free university medical centre)</p

    2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR).

    Get PDF
    European Society of CardiologyThis is the author accepted manuscript. The final version is available from Oxford University Press via http://dx.doi.org/10.1093/eurheartj/ehw10

    Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects

    Get PDF
    This overview addresses homocysteine and folate metabolism. Its functions and complexity are described, leading to explanations why disturbed homocysteine and folate metabolism is implicated in many different diseases, including congenital birth defects like congenital heart disease, cleft lip and palate, late pregnancy complications, different kinds of neurodegenerative and psychiatric diseases, osteoporosis and cancer. In addition, the inborn errors leading to hyperhomocysteinemia and homocystinuria are described. These extreme human hyperhomocysteinemia models provide knowledge about which part of the homocysteine and folate pathways are linked to which disease. For example, the very high risk for arterial and venous occlusive disease in patients with severe hyperhomocysteinemia irrespective of the location of the defect in remethylation or transsulphuration indicates that homocysteine itself or one of its “direct” derivatives is considered toxic for the cardiovascular system. Finally, common diseases associated with elevated homocysteine are discussed with the focus on cardiovascular disease and neural tube defects

    Perivascular Adipose Tissue and Its Role in Type 2 Diabetes and Cardiovascular Disease

    Get PDF
    Obesity is associated with insulin resistance, hypertension, and cardiovascular disease, but the mechanisms underlying these associations are incompletely understood. Microvascular dysfunction may play an important role in the pathogenesis of both insulin resistance and hypertension in obesity. Adipose tissue-derived substances (adipokines) and especially inflammatory products of adipose tissue control insulin sensitivity and vascular function. In the past years, adipose tissue associated with the vasculature, or perivascular adipose tissue (PAT), has been shown to produce a variety of adipokines that contribute to regulation of vascular tone and local inflammation. This review describes our current understanding of the mechanisms linking perivascular adipose tissue to vascular function, inflammation, and insulin resistance. Furthermore, we will discuss mechanisms controlling the quantity and adipokines secretion by PAT
    corecore