9 research outputs found

    Lack of concentration-dependent local toxicity of highly concentrated (5%) versus conventional 0.5% bupivacaine following musculoskeletal surgery in a rat model

    Get PDF
    PURPOSE: Various sustained-release formulations incorporate high bupivacaine concentrations but data on local toxicity is lacking. This study explores local toxic effects of highly concentrated (5%) bupivacaine compared to clinically used concentrations in vivo following skeletal surgery, to assess the safety of sustained-release formulations with high bupivacaine concentrations. METHODS: Sixteen rats underwent surgery, in which screws with catheters affixed were implanted in the spine or femur in a factorial experimental design, allowing single-shot or continuous 72 h local administration of 0.5%, 2.5% or 5.0% bupivacaine hydrochloride. During the 30-day follow-up, animal weight was recorded and blood samples were obtained. Implantation sites underwent histopathological scoring for muscle damage, inflammation, necrosis, periosteal reaction/thickening and osteoblast activity. Effects of bupivacaine concentration, administration mode and implantation site on local toxicity scores were analyzed. RESULTS: Chi-squared tests for score frequencies revealed a concentration-dependent decrease in osteoblast count. Moreover, spinal screw implantation led to significantly more muscle fibrosis but less bone damage than femoral screw implantation, reflecting the more invasive muscle dissection and shorter drilling times related to the spinal procedure. No differences between bupivacaine administration modes regarding histological scoring or body weight changes were observed. Weight increased, while CK levels and leukocyte counts decreased significantly during follow-up, reflecting postoperative recovery. No significant differences in weight, leukocyte count and CK were found between interventional groups. CONCLUSION: This pilot study found limited concentration-dependent local tissue effects of bupivacaine solutions concentrated up to 5.0% following musculoskeletal surgery in the rat study population

    Mechanism of trifluorothymidine potentiation of oxaliplatin-induced cytotoxicity to colorectal cancer cells

    Get PDF
    Oxaliplatin (OHP) is an anticancer agent that acts by formation of Platinum-DNA (Pt-DNA) adducts resulting in DNA-strand breaks and is used for the treatment of colorectal cancer. The pyrimidine analog trifluorothymidine (TFT) forms together with a thymidine phosphorylase inhibitor (TPI) the anticancer drug formulation TAS-102, in which TPI enhances the bioavailability of TFT in vivo. In this in vitro study the combined cytotoxic effects of OHP with TFT were investigated in human colorectal cancer cells as a model for TAS-102 combinations. In a panel of five colon cancer cell lines (WiDr, H630, Colo320, SNU-C4 and SW1116) we evaluated the OHP-TFT drug combinations using the multiple drug–effect analysis with CalcuSyn software, in which the combination index (CI) indicates synergism (CI<0.9), additivity (CI=0.9–1.1) or antagonism (CI>1.1). Drug target analysis was used for WiDr, H630 and SW1116 to investigate whether there was an increase in Pt-DNA adduct formation, DNA damage induction, cell cycle delay and apoptosis. Trifluorothymidine combined with OHP resulted in synergism for all cell lines (all CI<0.9). This was irrespective of schedule in which either one of the drugs was kept at a constant concentration (using variable drug ratio) or when the two drugs were added in a 1 : 1 IC50-based molar ratio. Synergism could be increased for WiDr using sequential drug treatment schedules. Trifluorothymidine increased Pt-DNA adduct formation significantly in H630 and SW1116 (14.4 and 99.1%, respectively; P<0.05). Platinum-DNA adducts were retained best in SW1116 in the presence of TFT. More DNA-strand breaks were induced in SW1116 and the combination increased DNA damage induction (>20%) compared with OHP alone. Exposure to the drugs induced a clear cell-cycle S-phase arrest, but was dose schedule and cell line dependent. Trifluorothymidine (TFT) and OHP both induced apoptosis, which increased significantly for WiDr and SW1116 after TFT–OHP exposure (18.8 and 20.6% respectively; P<0.05). The basal protein levels of ERCC1 DNA repair enzyme were not related to the DNA damage that was induced in the cell lines. In conclusion, the combination of TFT with the DNA synthesis inhibitor OHP induces synergism in colorectal cancer cells, but is dependent on the dose and treatment schedule used

    Lack of concentration‐dependent local toxicity of highly concentrated (5%) versus conventional 0.5% bupivacaine following musculoskeletal surgery in a rat model

    No full text
    Abstract Purpose Various sustained‐release formulations incorporate high bupivacaine concentrations but data on local toxicity is lacking. This study explores local toxic effects of highly concentrated (5%) bupivacaine compared to clinically used concentrations in vivo following skeletal surgery, to assess the safety of sustained‐release formulations with high bupivacaine concentrations. Methods Sixteen rats underwent surgery, in which screws with catheters affixed were implanted in the spine or femur in a factorial experimental design, allowing single‐shot or continuous 72 h local administration of 0.5%, 2.5% or 5.0% bupivacaine hydrochloride. During the 30‐day follow‐up, animal weight was recorded and blood samples were obtained. Implantation sites underwent histopathological scoring for muscle damage, inflammation, necrosis, periosteal reaction/thickening and osteoblast activity. Effects of bupivacaine concentration, administration mode and implantation site on local toxicity scores were analyzed. Results Chi‐squared tests for score frequencies revealed a concentration‐dependent decrease in osteoblast count. Moreover, spinal screw implantation led to significantly more muscle fibrosis but less bone damage than femoral screw implantation, reflecting the more invasive muscle dissection and shorter drilling times related to the spinal procedure. No differences between bupivacaine administration modes regarding histological scoring or body weight changes were observed. Weight increased, while CK levels and leukocyte counts decreased significantly during follow‐up, reflecting postoperative recovery. No significant differences in weight, leukocyte count and CK were found between interventional groups. Conclusion This pilot study found limited concentration‐dependent local tissue effects of bupivacaine solutions concentrated up to 5.0% following musculoskeletal surgery in the rat study population

    Lack of concentration-dependent local toxicity of highly concentrated (5%) versus conventional 0.5% bupivacaine following musculoskeletal surgery in a rat model

    No full text
    PURPOSE: Various sustained-release formulations incorporate high bupivacaine concentrations but data on local toxicity is lacking. This study explores local toxic effects of highly concentrated (5%) bupivacaine compared to clinically used concentrations in vivo following skeletal surgery, to assess the safety of sustained-release formulations with high bupivacaine concentrations. METHODS: Sixteen rats underwent surgery, in which screws with catheters affixed were implanted in the spine or femur in a factorial experimental design, allowing single-shot or continuous 72 h local administration of 0.5%, 2.5% or 5.0% bupivacaine hydrochloride. During the 30-day follow-up, animal weight was recorded and blood samples were obtained. Implantation sites underwent histopathological scoring for muscle damage, inflammation, necrosis, periosteal reaction/thickening and osteoblast activity. Effects of bupivacaine concentration, administration mode and implantation site on local toxicity scores were analyzed. RESULTS: Chi-squared tests for score frequencies revealed a concentration-dependent decrease in osteoblast count. Moreover, spinal screw implantation led to significantly more muscle fibrosis but less bone damage than femoral screw implantation, reflecting the more invasive muscle dissection and shorter drilling times related to the spinal procedure. No differences between bupivacaine administration modes regarding histological scoring or body weight changes were observed. Weight increased, while CK levels and leukocyte counts decreased significantly during follow-up, reflecting postoperative recovery. No significant differences in weight, leukocyte count and CK were found between interventional groups. CONCLUSION: This pilot study found limited concentration-dependent local tissue effects of bupivacaine solutions concentrated up to 5.0% following musculoskeletal surgery in the rat study population

    Thymidylate synthase inhibitors

    No full text

    Neoadjuvant Therapy for Breast Cancer: Established Concepts and Emerging Strategies

    No full text
    corecore