66 research outputs found

    Resting-State Brain Activity in Adult Males Who Stutter

    Get PDF
    Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI), few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF), region of interest (ROI)-based functional connectivity (FC) and independent component analysis (ICA)-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN) in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN) and in the connections between them

    Structure evolution in amylopectin/ethylene glycol mixtures by H-bond formation and phase separation studied with dielectric relaxation spectroscopy

    No full text
    The interaction between amylopectin, a starch polysaccharide, and ethylene glycol (EG) was investigated using broad-band dielectric relaxation spectroscopy. Water-free amylopectin (AP) was mixed with 21 wt % ethylene glycol. This resulted in a continuous ethylene glycol phase, as well as a molecularly mixed AP/EG fraction. After storage at room temperature or annealing, the mixture shows dynamic properties typical of a polymer with weak intermolecular interactions, suggesting that EG binds preferentially to AP and forms intrachain H-bridges leading to increased chain stiffness and thus an increased glass transition temperature. This structure evolution is accompanied by a sharp reduction in the size of the ethylene glycol droplets to a few nanometers, as revealed by pronounced confinement effects in the alpha -relaxation of the dispersed EG.status: publishe
    corecore