1,461 research outputs found
Preliminary estimates of the abundance and fidelity of dolphins associating with a demersal trawl fishery
The incidental capture of wildlife in fishing gear presents a global conservation challenge. As a baseline to inform assessments of the impact of bycatch on bottlenose dolphins (Tursiops truncatus) interacting with an Australian trawl fishery, we conducted an aerial survey to estimate dolphin abundance across the fishery. Concurrently, we carried out boat-based dolphin photo-identification to assess short-term fidelity to foraging around trawlers, and used photographic and genetic data to infer longer-term fidelity to the fishery. We estimated abundance at ≈ 2,300 dolphins (95% CI = 1,247-4,214) over the ≈ 25,880-km2 fishery. Mark-recapture estimates yielded 226 (SE = 38.5) dolphins associating with one trawler and some individuals photographed up to seven times over 12 capture periods. Moreover, photographic and genetic re-sampling over three years confirmed that some individuals show long-term fidelity to trawler-associated foraging. Our study presents the first abundance estimate for any Australian pelagic dolphin community and documents individuals associating with trawlers over days, months and years. Without trend data or correction factors for dolphin availability, the impact of bycatch on this dolphin population's conservation status remains unknown. These results should be taken into account by management agencies assessing the impact of fisheries-related mortality on this protected species
Impact of highly basic solutions on sorption of Cs+ to subsurface sediments from the Hanford site, USA
The effect of caustic NaNO3 solutions on the sorption of 137Cs to a Hanford site micaceous subsurface sediment was investigated as a function of base exposure time (up to 168 d), temperature (10°C or 50°C), and NaOH concentration (0.1 mol/L to 3 mol/L). At 10°C and 0.1 M NaOH, the slow evolution of [Al]aq was in stark contrast to the rapid increase and subsequent loss of [Al]aq observed at 50°C (regardless of base concentration). Exposure to 0.1 M NaOH at 10°C for up to 168 d exhibited little if any measurable effect on sediment mineralogy, Cs+ sorption, or Cs+ selectivity; sorption was well described with a two-site ion exchange model modified to include enthalpy effects. At 50°C, dissolution of phyllosilicate minerals increased with [OH]. A zeolite (tetranatrolite; Na2Al2Si3O10·2H2O) precipitated in 0.1 M NaOH after about 7 days, while an unnamed mineral phase (Na14Al12Si13O51·6H2O) precipitated after 4 and 2 days of exposure to 1 M and 3 M NaOH solutions, respectively. Short-term (16 h) Cs+ sorption isotherms (10−9–10−2 mol/L) were measured on sediment after exposure to 0.1 M NaOH for 56, 112, and 168 days at 50°C. There was a trend toward slightly lower conditional equilibrium exchange constants (∆log NaCsKc ~ 0.25) over the entire range of surface coverage, and a slight loss of high affinity sites (15%) after 168 days of pretreatment with 0.1 M base solution. Cs+ sorption to sediment over longer times was also measured at 50°C in the presence of NaOH (0.1 M, 1 M, and 3MNaOH) at Cs+ concentrations selected to probe a range of adsorption densities. Model simulations of Cs+ sorption to the sediment in the presence of 0.1 M NaOH for 112 days slightly under-predicted sorption at the lower Cs+ adsorption densities. At the higher adsorption densities, model simulations under-predicted sorption by 57%. This under-prediction was surmised to be the result of tetranatrolite precipitation, and subsequent slow Na → Cs exchange. At higher OH concentrations, Cs+ sorption in the presence of base for 112 days was unexpectedly equal to, or greater than that expected for pristine sediment. The precipitation of secondary phases, coupled with the fairly unique mica distribution and quantity across all size-fractions in the Hanford sediment, appears to mitigate the impact of base dissolution on Cs+ sorption
Impact of highly basic solutions on sorption of Cs+ to subsurface sediments from the Hanford site, USA
The effect of caustic NaNO3 solutions on the sorption of 137Cs to a Hanford site micaceous subsurface sediment was investigated as a function of base exposure time (up to 168 d), temperature (10°C or 50°C), and NaOH concentration (0.1 mol/L to 3 mol/L). At 10°C and 0.1 M NaOH, the slow evolution of [Al]aq was in stark contrast to the rapid increase and subsequent loss of [Al]aq observed at 50°C (regardless of base concentration). Exposure to 0.1 M NaOH at 10°C for up to 168 d exhibited little if any measurable effect on sediment mineralogy, Cs+ sorption, or Cs+ selectivity; sorption was well described with a two-site ion exchange model modified to include enthalpy effects. At 50°C, dissolution of phyllosilicate minerals increased with [OH]. A zeolite (tetranatrolite; Na2Al2Si3O10·2H2O) precipitated in 0.1 M NaOH after about 7 days, while an unnamed mineral phase (Na14Al12Si13O51·6H2O) precipitated after 4 and 2 days of exposure to 1 M and 3 M NaOH solutions, respectively. Short-term (16 h) Cs+ sorption isotherms (10−9–10−2 mol/L) were measured on sediment after exposure to 0.1 M NaOH for 56, 112, and 168 days at 50°C. There was a trend toward slightly lower conditional equilibrium exchange constants (∆log NaCsKc ~ 0.25) over the entire range of surface coverage, and a slight loss of high affinity sites (15%) after 168 days of pretreatment with 0.1 M base solution. Cs+ sorption to sediment over longer times was also measured at 50°C in the presence of NaOH (0.1 M, 1 M, and 3MNaOH) at Cs+ concentrations selected to probe a range of adsorption densities. Model simulations of Cs+ sorption to the sediment in the presence of 0.1 M NaOH for 112 days slightly under-predicted sorption at the lower Cs+ adsorption densities. At the higher adsorption densities, model simulations under-predicted sorption by 57%. This under-prediction was surmised to be the result of tetranatrolite precipitation, and subsequent slow Na → Cs exchange. At higher OH concentrations, Cs+ sorption in the presence of base for 112 days was unexpectedly equal to, or greater than that expected for pristine sediment. The precipitation of secondary phases, coupled with the fairly unique mica distribution and quantity across all size-fractions in the Hanford sediment, appears to mitigate the impact of base dissolution on Cs+ sorption
How rainfall variation influences reproductive patterns of African Savanna ungulates in an equatorial region where photoperiod variation is absent.
In high temperate latitudes, ungulates generally give birth within a narrow time window when conditions are optimal for offspring survival in spring or early summer, and use changing photoperiod to time conceptions so as to anticipate these conditions. However, in low tropical latitudes day length variation is minimal, and rainfall variation makes the seasonal cycle less predictable. Nevertheless, several ungulate species retain narrow birth peaks under such conditions, while others show births spread quite widely through the year. We investigated how within-year and between-year variation in rainfall influenced the reproductive timing of four ungulate species showing these contrasting patterns in the Masai Mara region of Kenya. All four species exhibited birth peaks during the putative optimal period in the early wet season. For hartebeest and impala, the birth peak was diffuse and offspring were born throughout the year. In contrast, topi and warthog showed a narrow seasonal concentration of births, with conceptions suppressed once monthly rainfall fell below a threshold level. High rainfall in the previous season and high early rains in the current year enhanced survival into the juvenile stage for all the species except impala. Our findings reveal how rainfall variation affecting grass growth and hence herbivore nutrition can govern the reproductive phenology of ungulates in tropical latitudes where day length variation is minimal. The underlying mechanism seems to be the suppression of conceptions once nutritional gains become insufficient. Through responding proximally to within-year variation in rainfall, tropical savanna ungulates are less likely to be affected adversely by the consequences of global warming for vegetation phenology than northern ungulates showing more rigid photoperiodic control over reproductive timing
Study of Effect on Teeth of Intermittent Fluoridation of a Community Water Supply
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67913/2/10.1177_00220345530320011601.pd
Theoretical study of the two-proton halo candidate Ne including contributions from resonant continuum and pairing correlations
With the relativistic Coulomb wave function boundary condition, the energies,
widths and wave functions of the single proton resonant orbitals for Ne
are studied by the analytical continuation of the coupling constant (ACCC)
approach within the framework of the relativistic mean field (RMF) theory.
Pairing correlations and contributions from the single-particle resonant
orbitals in the continuum are taken into consideration by the resonant
Bardeen-Cooper-Schrieffer (BCS) approach, in which constant pairing strength is
used. It can be seen that the fully self-consistent calculations with NL3 and
NLSH effective interactions mostly agree with the latest experimental
measurements, such as binding energies, matter radii, charge radii and
densities. The energy of 2s orbital is slightly higher than that
of orbital, and the occupation probability of the
2s orbital is about 20%, which are in accordance with the
shell model calculation and three-body model estimation
Direct Search for Low Mass Dark Matter Particles with CCDs
A direct dark matter search is performed using fully-depleted
high-resistivity CCD detectors . Due to their low electronic readout noise (RMS
~ 7 eV) these devices operate with a very low detection threshold of 40 eV,
making the search for dark matter particles with low masses (~ 5 GeV) possible.
The results of an engineering run performed in a shallow underground site are
presented, demonstrating the potential of this technology in the low mass
region
SemEval-2022 Task 2 : multilingual idiomaticity detection and sentence embedding
This paper presents the shared task on Multilingual Idiomaticity Detection and Sentence Embedding, which consists of two subtasks: (a) a binary classification task aimed at identifying whether a sentence contains an idiomatic expression, and (b) a task based on semantic text similarity which requires the model to adequately represent potentially idiomatic expressions in context. Each subtask includes different settings regarding the amount of training data. Besides the task description, this paper introduces the datasets in English, Portuguese, and Galician and their annotation procedure, the evaluation metrics, and a summary of the participant systems and their results. The task had close to 100 registered participants organised into twenty five teams making over 650 and 150 submissions in the practice and evaluation phases respectively
- …