786 research outputs found

    Ab initio calculation of the neutron-proton mass difference

    Get PDF
    The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14\% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of 300300 kilo-electron volts, which is greater than 00 by 55 standard deviations. We also determine the splittings in the Σ\Sigma, Ξ\Xi, DD and Ξcc\Xi_{cc} isospin multiplets, exceeding in some cases the precision of experimental measurements.Comment: 57 pages, 15 figures, 6 tables, revised versio

    Design and validation of a supragenome array for determination of the genomic content of Haemophilus influenzae isolates

    Full text link
    Abstract Background Haemophilus influenzae colonizes the human nasopharynx as a commensal, and is etiologically associated with numerous opportunistic infections of the airway; it is also less commonly associated with invasive disease. Clinical isolates of H. influenzae display extensive genomic diversity and plasticity. The development of strategies to successfully prevent, diagnose and treat H. influenzae infections depends on tools to ascertain the gene content of individual isolates. Results We describe and validate a Haemophilus influenzae supragenome hybridization (SGH) array that can be used to characterize the full genic complement of any strain within the species, as well as strains from several highly related species. The array contains 31,307 probes that collectively cover essentially all alleles of the 2890 gene clusters identified from the whole genome sequencing of 24 clinical H. influenzae strains. The finite supragenome model predicts that these data include greater than 85% of all non-rare genes (where rare genes are defined as those present in less than 10% of sequenced strains). The veracity of the array was tested by comparing the whole genome sequences of eight strains with their hybridization data obtained using the supragenome array. The array predictions were correct and reproducible for ~ 98% of the gene content of all of the sequenced strains. This technology was then applied to an investigation of the gene content of 193 geographically and clinically diverse H. influenzae clinical strains. These strains came from multiple locations from five different continents and Papua New Guinea and include isolates from: the middle ears of persons with otitis media and otorrhea; lung aspirates and sputum samples from pneumonia and COPD patients, blood specimens from patients with sepsis; cerebrospinal fluid from patients with meningitis, as well as from pharyngeal specimens from healthy persons. Conclusions These analyses provided the most comprehensive and detailed genomic/phylogenetic look at this species to date, and identified a subset of highly divergent strains that form a separate lineage within the species. This array provides a cost-effective and high-throughput tool to determine the gene content of any H. influenzae isolate or lineage. Furthermore, the method for probe selection can be applied to any species, given a group of available whole genome sequences.http://deepblue.lib.umich.edu/bitstream/2027.42/112375/1/12864_2012_Article_5193.pd

    Appropriate disclosure of a diagnosis of dementia : identifying the key behaviours of 'best practice'

    Get PDF
    Background: Despite growing evidence that many people with dementia want to know their diagnosis, there is wide variation in attitudes of professionals towards disclosure. The disclosure of the diagnosis of dementia is increasingly recognised as being a process rather than a one-off behaviour. However, the different behaviours that contribute to this process have not been comprehensively defined. No intervention studies to improve diagnostic disclosure in dementia have been reported to date. As part of a larger study to develop an intervention to promote appropriate disclosure, we sought to identify important disclosure behaviours and explore whether supplementing a literature review with other methods would result in the identification of new behaviours. Methods: To identify a comprehensive list of behaviours in disclosure we conducted a literature review, interviewed people with dementia and informal carers, and used a consensus process involving health and social care professionals. Content analysis of the full list of behaviours was carried out. Results: Interviews were conducted with four people with dementia and six informal carers. Eight health and social care professionals took part in the consensus panel. From the interviews, consensus panel and literature review 220 behaviours were elicited, with 109 behaviours over-lapping. The interviews and consensus panel elicited 27 behaviours supplementary to the review. Those from the interviews appeared to be self-evident but highlighted deficiencies in current practice and from the panel focused largely on balancing the needs of people with dementia and family members. Behaviours were grouped into eight categories: preparing for disclosure; integrating family members; exploring the patient's perspective; disclosing the diagnosis; responding to patient reactions; focusing on quality of life and well-being; planning for the future; and communicating effectively. Conclusion: This exercise has highlighted the complexity of the process of disclosing a diagnosis of dementia in an appropriate manner. It confirms that many of the behaviours identified in the literature (often based on professional opinion rather than empirical evidence) also resonate with people with dementia and informal carers. The presence of contradictory behaviours emphasises the need to tailor the process of disclosure to individual patients and carers. Our combined methods may be relevant to other efforts to identify and define complex clinical practices for further study.This project is funded by UK Medical Research Council, Grant reference number G0300999

    Plans for Aeroelastic Prediction Workshop

    Get PDF
    This paper summarizes the plans for the first Aeroelastic Prediction Workshop. The workshop is designed to assess the state of the art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. Three subject configurations have been chosen from existing wind tunnel data sets where there is pertinent experimental data available for comparison. For each case chosen, the wind tunnel testing was conducted using forced oscillation of the model at specified frequencie

    Reduction of PG:1115+080 Images

    Get PDF
    The data are three exposures in PC6 through F785LP obtained on March 3, 1991. The exposure times are 120, 400, and 400 seconds. The data are reduced with the "standard" WFPC reduction scheme: A-to-D correction, DC bias subtraction, AC bias subtraction, dark current subtraction, preflash subtraction, and flat field normalization, using the best available calibration data. The exposures are combined into a weighted average normalized to 400 seconds exposure time, so one DN (data number) is about 17.25 electrons. At this step, cosmic rays are removed by intercomparison of the three images

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Differential Influence of Clonal Integration on Morphological and Growth Responses to Light in Two Invasive Herbs

    Get PDF
    Background and aims: In contrast to seeds, high sensitivity of vegetative fragments to unfavourable environments may limit the expansion of clonal invasive plants. However, clonal integration promotes the establishment of propagules in less suitable habitats and may facilitate the expansion of clonal invaders into intact native communities. Here, we examine the influence of clonal integration on the morphology and growth of ramets in two invasive plants, Alternanthera philoxeroides and Phyla canescens, under varying light conditions. Methods: In a greenhouse experiment, branches, connected ramets and severed ramets of the same mother plant were exposed under full sun and 85 % shade and their morphological and growth responses were assessed. Key results: The influence of clonal integration on the light reaction norm (connection6light interaction) of daughter ramets was species-specific. For A. philoxeroides, clonal integration evened out the light response (total biomass, leaf mass per area, and stem number, diameter and length) displayed in severed ramets, but these connection6light interactions were largely absent for P. canescens. Nevertheless, for both species, clonal integration overwhelmed light effect in promoting the growth of juvenile ramets during early development. Also, vertical growth, as an apparent shade acclimation response, was more prevalent in severed ramets than in connected ramets. Finally, unrooted branches displayed smaller organ size and slower growth than connected ramets, but the pattern of light reaction was similar, suggesting mothe
    corecore