128 research outputs found

    GPS phase scintillation associated with optical auroral emissions:first statistical results from the geographic South Pole

    Get PDF
    Ionospheric irregularities affect the propagation of Global Navigation Satellite System (GNSS) signals, causing radio scintillation. Particle precipitation from the magnetosphere into the ionosphere, following solar activity, is an important production mechanism for ionospheric irregularities. Particle precipitation also causes the aurorae. However, the correlation of aurorae and GNSS scintillation events is not well established in literature. This study examines optical auroral events during 2010-2011 and reports spatial and temporal correlations with Global Positioning System (GPS) L1 phase fluctuations using instrumentation located at South Pole Station. An all-sky imager provides a measure of optical emission intensities ([OI] 557.7nm and 630.0nm) at auroral latitudes during the winter months. A collocated GPS antenna and scintillation receiver facilitates superimposition of auroral images and GPS signal measurements. Correlation statistics are produced by tracking emission intensities and GPS L1 sigma indices at E and F-region heights. This is the first time that multi-wavelength auroral images have been compared with scintillation measurements in this way. Correlation levels of up to 74% are observed during 2-3hour periods of discrete arc structuring. Analysis revealed that higher values of emission intensity corresponded with elevated levels of sigma. The study has yielded the first statistical evidence supporting the previously assumed relationship between the aurorae and GPS signal propagation. The probability of scintillation-induced GPS outages is of interest for commercial and safety-critical operations at high latitudes. Results in this paper indicate that image databases of optical auroral emissions could be used to assess the likelihood of multiple satellite scintillation activity

    Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.

    Get PDF
    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut

    Specific interaction with the nuclear transporter importin α2 can modulate paraspeckle protein 1 delivery to nuclear paraspeckles

    Get PDF
    Importin (IMP) superfamily members mediate regulated nucleocytoplasmic transport, which is central to key cellular processes. Although individual IMPα proteins exhibit dynamic synthesis and subcellular localization during cellular differentiation, including during spermatogenesis, little is known of how this affects cell fate. To investigate how IMPαs control cellular development, we conducted a yeast two-hybrid screen for IMPα2 cargoes in embryonic day 12.5 mouse testis, a site of peak IMPα2 expression coincident with germ-line masculization. We identified paraspeckle protein 1 (PSPC1), the original defining component of nuclear paraspeckles, as an IMPα2-binding partner. PSPC1-IMPα2 binding in testis was confirmed in immunoprecipitations and pull downs, and an enzyme-linked immunosorbent assay–based assay demonstrated direct, high-affinity PSPC1 binding to either IMPα2/IMPβ1 or IMPα6/IMPβ1. Coexpression of full-length PSPC1 and IMPα2 in HeLa cells yielded increased PSPC1 localization in nuclear paraspeckles. High-throughput image analysis of >3500 cells indicated IMPα2 levels can directly determine PSPC1-positive nuclear speckle numbers and size; a transport-deficient IMPα2 isoform or small interfering RNA knockdown of IMPα2 each reduced endogenous PSPC1 accumulation in speckles. This first validation of an IMPα2 nuclear import cargo in fetal testis provides novel evidence that PSPC1 delivery to paraspeckles, and consequently paraspeckle function, may be controlled by modulated synthesis of specific IMPs

    The Phase II Murchison Widefield Array: Design overview

    Get PDF
    We describe the motivation and design details of the "Phase II" upgrade of the Murchison Widefield Array (MWA) radio telescope. The expansion doubles to 256 the number of antenna tiles deployed in the array. The new antenna tiles enhance the capabilities of the MWA in several key science areas. Seventy-two of the new tiles are deployed in a regular configuration near the existing MWA core. These new tiles enhance the surface brightness sensitivity of the MWA and will improve the ability of the MWA to estimate the slope of the Epoch of Reionisation power spectrum by a factor of ~3.5. The remaining 56 tiles are deployed on long baselines, doubling the maximum baseline of the array and improving the array u,v coverage. The improved imaging capabilities will provide an order of magnitude improvement in the noise floor of MWA continuum images. The upgrade retains all of the features that have underpinned the MWA's success (large field-of-view, snapshot image quality, pointing agility) and boosts the scientific potential with enhanced imaging capabilities and by enabling new calibration strategies

    APOΕ4 Lowers Energy Expenditure in Females and Impairs Glucose Oxidation by Increasing Flux through Aerobic Glycolysis

    Get PDF
    BACKGROUND: Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer\u27s disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field. METHODS: Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4. RESULTS: Single-cell analysis of brain tissue from mice expressing human APOE revealed E4-associated decreases in genes related to oxidative phosphorylation, particularly in astrocytes. This shift was confirmed on a metabolic level with isotopic tracing of 13C-glucose in E4 mice and astrocytes, which showed decreased pyruvate entry into the TCA cycle and increased lactate synthesis. Metabolic phenotyping of E4 astrocytes showed elevated glycolytic activity, decreased oxygen consumption, blunted oxidative flexibility, and a lower rate of glucose oxidation in the presence of lactate. Together, these cellular findings suggest an E4-associated increase in aerobic glycolysis (i.e. the Warburg effect). To test whether this phenomenon translated to APOE4 humans, we analyzed the plasma metabolome of young and middle-aged human participants with and without the Ε4 allele, and used indirect calorimetry to measure whole body oxygen consumption and energy expenditure. In line with data from E4-expressing female mice, a subgroup analysis revealed that young female E4 carriers showed a striking decrease in energy expenditure compared to non-carriers. This decrease in energy expenditure was primarily driven by a lower rate of oxygen consumption, and was exaggerated following a dietary glucose challenge. Further, the stunted oxygen consumption was accompanied by markedly increased lactate in the plasma of E4 carriers, and a pathway analysis of the plasma metabolome suggested an increase in aerobic glycolysis. CONCLUSIONS: Together, these results suggest astrocyte, brain and system-level metabolic reprogramming in the presence of APOE4, a \u27Warburg like\u27 endophenotype that is observable in young females decades prior to clinically manifest AD

    Comorbid medical illness in bipolar disorder

    Get PDF
    Background Individuals with a mental health disorder appear to be at increased risk of medical illness. Aims To examine rates of medical illnesses in patients with bipolar disorder (n = 1720) and to examine the clinical course of the bipolar illness according to lifetime medical illness burden. Method Participants recruited within the UK were asked about the lifetime occurrence of 20 medical illnesses, interviewed using the Schedules for Clinical Assessment in Neuropsychiatry (SCAN) and diagnosed according to DSM-IV criteria. Results We found significantly increased rates of several medical illnesses in our bipolar sample. A high medical illness burden was associated with a history of anxiety disorder, rapid cycling mood episodes, suicide attempts and mood episodes with a typically acute onset. Conclusions Bipolar disorder is associated with high rates of medical illness. This comorbidity needs to be taken into account by services in order to improve outcomes for patients with bipolar disorder and also in research investigating the aetiology of affective disorder where shared biological pathways may play a role

    Genome-wide regional heritability mapping identifies a locus within the<i> TOX2</i> gene associated with Major Depressive Disorder

    Get PDF
    Background: Major depressive disorder (MDD) is the second largest cause of global disease burden. It has an estimated heritability of 37%, but published genome-wide association studies have so far identified few risk loci. Haplotype-block-based regional heritability mapping (HRHM) estimates the localized genetic variance explained by common variants within haplotype blocks, integrating the effects of multiple variants, and may be more powerful for identifying MDD-associated genomic regions. Methods: We applied HRHM to Generation Scotland: The Scottish Family Health Study, a large family- and population-based Scottish cohort (N = 19,896). Single-single nucleotide polymorphism (SNP) and haplotype-based association tests were used to localize the association signal within the regions identified by HRHM. Functional prediction was used to investigate the effect of MDD-associated SNPs within the regions. Results: A haplotype block across a 24-kb region within the TOX2 gene reached genome-wide significance in HRHM. Single-SNP- and haplotype-based association tests demonstrated that five of nine genotyped SNPs and two haplotypes within this block were significantly associated with MDD. The expression of TOX2 and a brain-specific long noncoding RNA RP1-269M15.3 in frontal cortex and nucleus accumbens basal ganglia, respectively, were significantly regulated by MDD-associated SNPs within this region. Both the regional heritability and single-SNP associations within this block were replicated in the UK–Ireland group of the most recent release of the Psychiatric Genomics Consortium (PGC), the PGC2–MDD (Major Depression Dataset). The SNP association was also replicated in a depressive symptom sample that shares some individuals with the PGC2–MDD. Conclusions: This study highlights the value of HRHM for MDD and provides an important target within TOX2 for further functional studies

    Mechanisms and management of loss of response to anti-TNF therapy for patients with Crohn's disease:3-year data from the prospective, multicentre PANTS cohort study

    Get PDF
    Background: We sought to report the effectiveness of infliximab and adalimumab over the first 3 years of treatment and to define the factors that predict anti-TNF treatment failure and the strategies that prevent or mitigate loss of response. Methods: Personalised Anti-TNF therapy in Crohn's disease (PANTS) is a UK-wide, multicentre, prospective observational cohort study reporting the rates of effectiveness of infliximab and adalimumab in anti-TNF-naive patients with active luminal Crohn's disease aged 6 years and older. At the end of the first year, sites were invited to enrol participants still receiving study drug into the 2-year PANTS-extension study. We estimated rates of remission across the whole cohort at the end of years 1, 2, and 3 of the study using a modified survival technique with permutation testing. Multivariable regression and survival analyses were used to identify factors associated with loss of response in patients who had initially responded to anti-TNF therapy and with immunogenicity. Loss of response was defined in patients who initially responded to anti-TNF therapy at the end of induction and who subsequently developed symptomatic activity that warranted an escalation of steroid, immunomodulatory, or anti-TNF therapy, resectional surgery, or exit from study due to treatment failure. This study was registered with ClinicalTrials.gov, NCT03088449, and is now complete. Findings: Between March 19, 2014, and Sept 21, 2017, 389 (41%) of 955 patients treated with infliximab and 209 (32%) of 655 treated with adalimumab in the PANTS study entered the PANTS-extension study (median age 32·5 years [IQR 22·1–46·8], 307 [51%] of 598 were female, and 291 [49%] were male). The estimated proportion of patients in remission at the end of years 1, 2, and 3 were, for infliximab 40·2% (95% CI 36·7–43·7), 34·4% (29·9–39·0), and 34·7% (29·8–39·5), and for adalimumab 35·9% (95% CI 31·2–40·5), 32·9% (26·8–39·2), and 28·9% (21·9–36·3), respectively. Optimal drug concentrations at week 14 to predict remission at any later timepoints were 6·1–10·0 mg/L for infliximab and 10·1–12·0 mg/L for adalimumab. After excluding patients who had primary non-response, the estimated proportions of patients who had loss of response by years 1, 2, and 3 were, for infliximab 34·4% (95% CI 30·4–38·2), 54·5% (49·4–59·0), and 60·0% (54·1–65·2), and for adalimumab 32·1% (26·7–37·1), 47·2% (40·2–53·4), and 68·4% (50·9–79·7), respectively. In multivariable analysis, loss of response at year 2 and 3 for patients treated with infliximab and adalimumab was predicted by low anti-TNF drug concentrations at week 14 (infliximab: hazard ratio [HR] for each ten-fold increase in drug concentration 0·45 [95% CI 0·30–0·67], adalimumab: 0·39 [0·22–0·70]). For patients treated with infliximab, loss of response was also associated with female sex (vs male sex; HR 1·47 [95% CI 1·11–1·95]), obesity (vs not obese 1·62 [1·08–2·42]), baseline white cell count (1·06 [1·02–1·11) per 1 × 109 increase in cells per L), and thiopurine dose quartile. Among patients treated with adalimumab, carriage of the HLA-DQA1*05 risk variant was associated with loss of response (HR 1·95 [95% CI 1·17–3·25]). By the end of year 3, the estimated proportion of patients who developed anti-drug antibodies associated with undetectable drug concentrations was 44·0% (95% CI 38·1–49·4) among patients treated with infliximab and 20·3% (13·8–26·2) among those treated with adalimumab. The development of anti-drug antibodies associated with undetectable drug concentrations was significantly associated with treatment without concomitant immunomodulator use for both groups (HR for immunomodulator use: infliximab 0·40 [95% CI 0·31–0·52], adalimumab 0·42 [95% CI 0·24–0·75]), and with carriage of HLA-DQA1*05 risk variant for infliximab (HR for carriage of risk variant: infliximab 1·46 [1·13–1·88]) but not for adalimumab (HR 1·60 [0·92–2·77]). Concomitant use of an immunomodulator before or on the day of starting infliximab was associated with increased time without the development of anti-drug antibodies associated with undetectable drug concentrations compared with use of infliximab alone (HR 2·87 [95% CI 2·20–3·74]) or introduction of an immunomodulator after anti-TNF initiation (1·70 [1·11–2·59]). In years 2 and 3, 16 (4%) of 389 patients treated with infliximab and 11 (5%) of 209 treated with adalimumab had adverse events leading to treatment withdrawal. Nine (2%) patients treated with infliximab and two (1%) of those treated with adalimumab had serious infections in years 2 and 3. Interpretation: Only around a third of patients with active luminal Crohn's disease treated with an anti-TNF drug were in remission at the end of 3 years of treatment. Low drug concentrations at the end of the induction period predict loss of response by year 3 of treatment, suggesting higher drug concentrations during the first year of treatment, particularly during induction, might lead to better long-term outcomes. Anti-drug antibodies associated with undetectable drug concentrations of infliximab, but not adalimumab, can be predicted by carriage of HLA-DQA1*05 and mitigated by concomitant immunomodulator use for both drugs. Funding: Guts UK, Crohn's and Colitis UK, Cure Crohn's Colitis, AbbVie, Merck Sharp and Dohme, Napp Pharmaceuticals, Pfizer, and Celltrion Healthcare.</p

    Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism

    Get PDF
    Neuroticism is a relatively stable personality trait characterized by negative emotionality (for example, worry and guilt)1; heritability estimated from twin studies ranges from 30 to 50%2, and SNP-based heritability ranges from 6 to 15%3,4,5,6. Increased neuroticism is associated with poorer mental and physical health7,8, translating to high economic burden9. Genome-wide association studies (GWAS) of neuroticism have identified up to 11 associated genetic loci3,4. Here we report 116 significant independent loci from a GWAS of neuroticism in 329,821 UK Biobank participants; 15 of these loci replicated at P &lt; 0.00045 in an unrelated cohort (N = 122,867). Genetic signals were enriched in neuronal genesis and differentiation pathways, and substantial genetic correlations were found between neuroticism and depressive symptoms (rg = 0.82, standard error (s.e.) = 0.03), major depressive disorder (MDD; rg = 0.69, s.e. = 0.07) and subjective well-being (rg = –0.68, s.e. = 0.03) alongside other mental health traits. These discoveries significantly advance understanding of neuroticism and its association with MDD

    Baseline Expression of Immune Gene Modules in Blood is Associated With Primary Response to Anti-TNF Therapy in Crohn’s Disease Patients

    Get PDF
    Background and Aims: Anti-tumour necrosis factor [anti-TNF] therapy is widely used for the treatment of inflammatory bowel disease, yet many patients are primary non-responders, failing to respond to induction therapy. We aimed to identify blood gene expression differences between primary responders and primary non-responders to anti-TNF monoclonal antibodies [infliximab and adalimumab], and to predict response status from blood gene expression and clinical data. Methods: The Personalised Anti-TNF Therapy in Crohn’s Disease [PANTS] study is a UK-wide prospective observational cohort study of anti-TNF therapy outcome in anti-TNF-naive Crohn’s disease patients [ClinicalTrials.gov identifier: NCT03088449]. Blood gene expression in 324 unique patients was measured by RNA-sequencing at baseline [week 0], and at weeks 14, 30, and 54 after treatment initiation [total sample size = 814]. Results: After adjusting for clinical covariates and estimated blood cell composition, baseline expression of major histocompatibility complex, antigen presentation, myeloid cell enriched receptor, and other innate immune gene modules was significantly higher in anti-TNF responders vs non-responders. Expression changes from baseline to week 14 were generally of consistent direction but greater magnitude [i.e. amplified] in responders, but interferon-related genes were upregulated uniquely in non-responders. Expression differences between responders and non-responders observed at week 14 were maintained at weeks 30 and 54. Prediction of response status from baseline clinical data, cell composition, and module expression was poor. Conclusions: Baseline gene module expression was associated with primary response to anti-TNF therapy in PANTS patients. However, these baseline expression differences did not predict response with sufficient sensitivity for clinical use.</p
    corecore