27 research outputs found

    Population-Related Variation in Plant Defense more Strongly Affects Survival of an Herbivore than Its Solitary Parasitoid Wasp

    Get PDF
    The performance of natural enemies, such as parasitoid wasps, is affected by differences in the quality of the host’s diet, frequently mediated by species or population-related differences in plant allelochemistry. Here, we compared survival, development time, and body mass in a generalist herbivore, the cabbage moth, Mamestra brassicae, and its solitary endoparasitoid, Microplitis mediator, when reared on two cultivated (CYR and STH) and three wild (KIM, OH, and WIN) populations of cabbage, Brassica oleracea. Plants either were undamaged or induced by feeding of larvae of the cabbage butterfly, Pieris rapae. Development and biomass of M. brassicae and Mi. mediator were similar on both cultivated and one wild cabbage population (KIM), intermediate on the OH population, and significantly lower on the WIN population. Moreover, development was prolonged and biomass was reduced on herbivore-induced plants. However, only the survival of parasitized hosts (and not that of healthy larvae) was affected by induction. Analysis of glucosinolates in leaves of the cabbages revealed higher levels in the wild populations than cultivars, with the highest concentrations in WIN plants. Multivariate statistics revealed a negative correlation between insect performance and total levels of glucosinolates (GS) and levels of 3-butenyl GS. However, GS chemistry could not explain the reduced performance on induced plants since only indole GS concentrations increased in response to herbivory, which did not affect insect performance based on multivariate statistics. This result suggests that, in addition to aliphatic GS, other non-GS chemicals are responsible for the decline in insect performance, and that these chemicals affect the parasitoid more strongly than the host. Remarkably, when developing on WIN plants, the survival of Mi. mediator to adult eclosion was much higher than in its host, M. brassicae. This may be due to the fact that hosts parasitized by Mi. mediator pass through fewer instars, and host growth is arrested when they are only a fraction of the size of healthy caterpillars. Certain aspects of the biology and life-history of the host and parasitoid may determine their response to chemical challenges imposed by the food plant

    Increased Resin Collection after Parasite Challenge: A Case of Self-Medication in Honey Bees?

    Get PDF
    The constant pressure posed by parasites has caused species throughout the animal kingdom to evolve suites of mechanisms to resist infection. Individual barriers and physiological defenses are considered the main barriers against parasites in invertebrate species. However, behavioral traits and other non-immunological defenses can also effectively reduce parasite transmission and infection intensity. In social insects, behaviors that reduce colony-level parasite loads are termed “social immunity.” One example of a behavioral defense is resin collection. Honey bees forage for plant-produced resins and incorporate them into their nest architecture. This use of resins can reduce chronic elevation of an individual bee's immune response. Since high activation of individual immunity can impose colony-level fitness costs, collection of resins may benefit both the individual and colony fitness. However the use of resins as a more direct defense against pathogens is unclear. Here we present evidence that honey bee colonies may self-medicate with plant resins in response to a fungal infection. Self-medication is generally defined as an individual responding to infection by ingesting or harvesting non-nutritive compounds or plant materials. Our results show that colonies increase resin foraging rates after a challenge with a fungal parasite (Ascophaera apis: chalkbrood or CB). Additionally, colonies experimentally enriched with resin had decreased infection intensities of this fungal parasite. If considered self-medication, this is a particularly unique example because it operates at the colony level. Most instances of self-medication involve pharmacophagy, whereby individuals change their diet in response to direct infection with a parasite. In this case with honey bees, resins are not ingested but used within the hive by adult bees exposed to fungal spores. Thus the colony, as the unit of selection, may be responding to infection through self-medication by increasing the number of individuals that forage for resin

    Behavioural evidence for self-medication in bumblebees?

    Get PDF
    The presence of antimicrobial secondary metabolites in nectar suggests that pollinators, which are threatened globally by emergent disease, may benefit from the consumption of nectars rich in these metabolites. We tested whether nicotine, a nectar secondary metabolite common in Solanaceae and Tilia species, is used by parasitized bumblebees as a source of self-medication , using a series of toxicological, microbiological and behavioural experiments. Caged bees infected with Crithidia bombi had a slight preference for sucrose solution laced with the alkaloid and behavioural tests showed that the parasite infection induced an increased consumption of nicotine during foraging activity, though nicotine had an appetite-reducing effect overall. When ingested, nicotine delayed the progression of a gut infection in bumblebees by a few days, but dietary nicotine did not clear the infection, and after 10 days the parasite load approached that of control bees. Moreover, when pathogens were exposed to the alkaloid prior to host ingestion, the protozoan's viability was not directly affected, suggesting that anti-parasite effects were relatively weak. Nicotine consumption in a single dose did not impose any cost even in starved bees but the alkaloid had detrimental effects on healthy bees if consistently consumed for weeks. These toxic effects disappeared in infected bees, suggesting that detoxification costs might have been counterbalanced by the advantages in slowing the progression of the infection. Nicotine consumption did not affect bee lifespan but the reduction in the parasite load may have other likely unexplored subtle benefits both for individual bees and their colony.  Potential evidence for self-medication is discussed. The contention that secondary metabolites in nectar may be under selection from pollinators, or used by plants to enhance their own reproductive success, remains to be confirmed.D.B. was supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programm

    A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)

    Get PDF
    The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest

    Creating Theme-Based Teaching through Inspirational Movies such as The Blind Side

    No full text

    Good Things Come in Larger Packages: Size Matters for Adult Fruit-Feeding Butterfly Dispersal and Larval Diet Breadth

    No full text
    Introduction: In animals, body size is correlated with many aspects of natural history, such as life span, abundance, dispersal capacity and diet breadth. However, contrasting trends have been reported for the relationship between body size and these ecological traits. Methods: Fruit-feeding butterflies were used to investigate whether body size is correlated with species abundance, dispersal, permanence, and larval diet breadth in a Neotropical savanna in Brazil (Cerrado). We used Blomberg’s K and Phylogenetic Generalized Least Squares models (PGLS) to measure phylogenetic signal strength in species traits and to estimate size–dispersal–diet breadth associations, while also taking shared ancestry into account. Results: 539 individuals from 27 species were captured, and 190 individuals were recaptured, representing a 35% recapture rate. We found body size to be negatively associated with butterfly abundance, and positively associated with dispersal level, distance traveled, number of traps visited, individual permanence, and diet breadth. These results indicate that larger butterflies are more likely to disperse over longer distances. Moreover, larger butterflies have more generalized larval diets, based on the number of host plant families, genera, and phylogenetic diversity of the host plants they consume as larvae. Smaller butterflies rely on fewer resources, which is reflected in their higher survival in small patches and may explain their lower dispersal ability and higher diet specialization. Nevertheless, lower dispersal ability may, if not compensated by large population sizes, threaten small-bodied species inhabiting environments, such as the Cerrado, which have intense deforestation rates. Conclusions: Body size is positively associated with dispersal and diet breadth for the fruit-feeding butterflies collected in this study

    Novel Insights into Tritrophic Interaction Diversity and Chemical Ecology Using 16 Years of Volunteer-Supported Research

    No full text
    Sixteen years ago, a schoolteacher from New Jersey collected a caterpillar in a Costa Rican rainforest. When a parasitoid emerged several days later, it became the first data point of a long-term volunteer–mediated study on tritrophic interactions across the Americas. The teacher was an Earthwatch Institute scientist and the project an ongoing ecological investigation of caterpillars, host plants, and the wasps and flies (parasitoids) that kill them (Fig. 1). Over the course of 16 years, 1,200 volunteers have contributed to the project, including adult and youth citizen scientists from Earthwatch, teachers, and a number of other volunteers who have offered their time for months or years

    Novel Insights into Tritrophic Interaction Diversity and Chemical Ecology Using 16 Years of Volunteer-Supported Research

    No full text
    Sixteen years ago, a schoolteacher from New Jersey collected a caterpillar in a Costa Rican rainforest. When a parasitoid emerged several days later, it became the first data point of a long-term volunteer–mediated study on tritrophic interactions across the Americas. The teacher was an Earthwatch Institute scientist and the project an ongoing ecological investigation of caterpillars, host plants, and the wasps and flies (parasitoids) that kill them (Fig. 1). Over the course of 16 years, 1,200 volunteers have contributed to the project, including adult and youth citizen scientists from Earthwatch, teachers, and a number of other volunteers who have offered their time for months or years
    corecore