720 research outputs found
Stresses in isostatic granular systems and emergence of force chains
Progress is reported on several questions that bedevil understanding of
granular systems: (i) are the stress equations elliptic, parabolic or
hyperbolic? (ii) how can the often-observed force chains be predicted from a
first-principles continuous theory? (iii) How to relate insight from isostatic
systems to general packings? Explicit equations are derived for the stress
components in two dimensions including the dependence on the local structure.
The equations are shown to be hyperbolic and their general solutions, as well
as the Green function, are found. It is shown that the solutions give rise to
force chains and the explicit dependence of the force chains trajectories and
magnitudes on the local geometry is predicted. Direct experimental tests of the
predictions are proposed. Finally, a framework is proposed to relate the
analysis to non-isostatic and more realistic granular assemblies.Comment: 4 pages, 2 figures, Corrected typos and clkearer text, submitted to
Phys. Rev. Let
Development of Stresses in Cohesionless Poured Sand
The pressure distribution beneath a conical sandpile, created by pouring sand
from a point source onto a rough rigid support, shows a pronounced minimum
below the apex (`the dip'). Recent work of the authors has attempted to explain
this phenomenon by invoking local rules for stress propagation that depend on
the local geometry, and hence on the construction history, of the medium. We
discuss the fundamental difference between such approaches, which lead to
hyperbolic differential equations, and elastoplastic models, for which the
equations are elliptic within any elastic zones present .... This displacement
field appears to be either ill-defined, or defined relative to a reference
state whose physical existence is in doubt. Insofar as their predictions depend
on physical factors unknown and outside experimental control, such
elastoplastic models predict that the observations should be intrinsically
irreproducible .... Our hyperbolic models are based instead on a physical
picture of the material, in which (a) the load is supported by a skeletal
network of force chains ("stress paths") whose geometry depends on construction
history; (b) this network is `fragile' or marginally stable, in a sense that we
define. .... We point out that our hyperbolic models can nonetheless be
reconciled with elastoplastic ideas by taking the limit of an extremely
anisotropic yield condition.Comment: 25 pages, latex RS.tex with rspublic.sty, 7 figures in Rsfig.ps.
Philosophical Transactions A, Royal Society, submitted 02/9
Static avalanches and Giant stress fluctuations in Silos
We propose a simple model for arch formation in silos. We show that small
pertubations (such as the thermal expansion of the beads) may lead to giant
stress fluctuations on the bottom plate of the silo. The relative amplitude
of these fluctuations are found to be power-law distributed, as
, . These fluctuations are related to large
scale `static avalanches', which correspond to long-range redistributions of
stress paths within the silo.Comment: 10 pages, 4 figures.p
Stress Propagation through Frictionless Granular Material
We examine the network of forces to be expected in a static assembly of hard,
frictionless spherical beads of random sizes, such as a colloidal glass. Such
an assembly is minimally connected: the ratio of constraint equations to
contact forces approaches unity for a large assembly. However, the bead
positions in a finite subregion of the assembly are underdetermined. Thus to
maintain equilibrium, half of the exterior contact forces are determined by the
other half. We argue that the transmission of force may be regarded as
unidirectional, in contrast to the transmission of force in an elastic
material. Specializing to sequentially deposited beads, we show that forces on
a given buried bead can be uniquely specified in terms of forces involving more
recently added beads. We derive equations for the transmission of stress
averaged over scales much larger than a single bead. This derivation requires
the Ansatz that statistical fluctuations of the forces are independent of
fluctuations of the contact geometry. Under this Ansatz, the
-component stress field can be expressed in terms of a d-component
vector field. The procedure may be generalized to non-sequential packings. In
two dimensions, the stress propagates according to a wave equation, as
postulated in recent work elsewhere. We demonstrate similar wave-like
propagation in higher dimensions, assuming that the packing geometry has
uniaxial symmetry. In macroscopic granular materials we argue that our approach
may be useful even though grains have friction and are not packed
sequentially.=17Comment: 15 pages, 4 figures, revised vertion for Phys. Rev.
Stress in frictionless granular material: Adaptive Network Simulations
We present a minimalistic approach to simulations of force transmission
through granular systems. We start from a configuration containing cohesive
(tensile) contact forces and use an adaptive procedure to find the stable
configuration with no tensile contact forces. The procedure works by
sequentially removing and adding individual contacts between adjacent beads,
while the bead positions are not modified. In a series of two-dimensional
realizations, the resulting force networks are shown to satisfy a linear
constraint among the three components of average stress, as anticipated by
recent theories. The coefficients in the linear constraint remain nearly
constant for a range of shear loadings up to about .6 of the normal loading.
The spatial distribution of contact forces shows strong concentration along
``force chains". The probability of contact forces of magnitude f shows an
exponential falloff with f. The response to a local perturbing force is
concentrated along two characteristic rays directed downward and laterally.Comment: 8 pages, 8 figure
Assessment and treatment of distorted schemas in sexual offenders
The aim of this review is to examine the literature related to the assessment and treatment of sex offenders’ distorted schemas. Where appropriate, the review draws upon current insights from the field of social cognition to aid in the critical evaluation of the findings. First, the review considers the various different methodologies for assessing distorted schemas, discussing their strengths and limitations. Second, the review examines the work related to the treatment of sex offenders’ schemas. Suggestions for future research, and the implications for clinical practice, are highlighted in the article
Antimicrobial use in European acute care hospitals: results from the second point prevalence survey (PPS) of healthcare-associated infections and antimicrobial use, 2016 to 2017
Antimicrobial agents used to treat infections are life-saving. Overuse may result in more frequent adverse effects and emergence of multidrug-resistant microorganisms. In 2016-17, we performed the second point-prevalence survey (PPS) of healthcare-associated infections (HAIs) and antimicrobial use in European acute care hospitals. We included 1,209 hospitals and 310,755 patients in 28 of 31 European Union/European Economic Area (EU/EEA) countries. The weighted prevalence of antimicrobial use in the EU/EEA was 30.5% (95% CI: 29.2-31.9%). The most common indication for prescribing antimicrobials was treatment of a community-acquired infection, followed by treatment of HAI and surgical prophylaxis. Over half (54.2%) of antimicrobials for surgical prophylaxis were prescribed for more than 1 day. The most common infections treated by antimicrobials were respiratory tract infections and the most commonly prescribed antimicrobial agents were penicillins with beta-lactamase inhibitors. There was wide variation of patients on antimicrobials, in the selection of antimicrobial agents and in antimicrobial stewardship resources and activities across the participating countries. The results of the PPS provide detailed information on antimicrobial use in European acute care hospitals, enable comparisons between countries and hospitals, and highlight key areas for national and European action that will support efforts towards prudent use of antimicrobials
An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis
Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is
a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a
complex disease caused by metastasis of tumor cells from their primary site and
is characterized by intricate interplay of molecular interactions.
Identification of targets for multifactorial diseases such as SBC, the most
frequent complication of breast and prostate cancers, is a challenge. Towards
achieving our aim of identification of targets specific to SBC, we constructed
a 'Cancer Genes Network', a representative protein interactome of cancer genes.
Using graph theoretical methods, we obtained a set of key genes that are
relevant for generic mechanisms of cancers and have a role in biological
essentiality. We also compiled a curated dataset of 391 SBC genes from
published literature which serves as a basis of ontological correlates of
secondary bone cancer. Building on these results, we implement a strategy based
on generic cancer genes, SBC genes and gene ontology enrichment method, to
obtain a set of targets that are specific to bone metastasis. Through this
study, we present an approach for probing one of the major complications in
cancers, namely, metastasis. The results on genes that play generic roles in
cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have
broader implications in understanding the role of molecular regulators in
mechanisms of cancers. Specifically, our study provides a set of potential
targets that are of ontological and regulatory relevance to secondary bone
cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary
information). Revised after critical reviews. Accepted for Publication in
PLoS ON
Characterisation of Laser Wakefield Acceleration Efficiency with Octave Spanning Near-IR Spectrum Measurements
We report on high efficiency energy transfer in a GeV-class laser wakefield
accelerator. Both the transfer of energy from the laser to the plasma
wakefield, and from the plasma to the accelerated electron beam were diagnosed
experimentally by simultaneous measurement of the deceleration of laser photons
and the accelerated electrons as a function of acceleration length. The
extraction efficiency, which we define as the ratio of the energy gained by the
electron beam to the energy lost by the self-guided laser mode, was maximised
at % by tuning of the plasma density, plasma length and incident laser
pulse compression. At higher densities, the laser was observed to fully
redshift over an entire octave, from 800~nm to 1600~nm.Comment: 7 pages, 5 figure
- …