427 research outputs found

    A large Wolf-Rayet population in NGC300 uncovered by VLT-FORS2

    Get PDF
    We have detected 58 Wolf-Rayet candidates in the central region of the nearby spiral galaxy NGC 300, based on deep VLT-FORS2 narrow-band imaging. Our survey is close to complete except for heavily reddened WR stars. Of the objects in our list, 16 stars were already spectroscopically confirmed as WR stars by Schild & Testor and Breysacher et al., to which 4 stars are added using low resolution FORS2 datasets. The WR population of NGC300 now totals 60,a threefold increase over previous surveys, with WC/WN>1/3, in reasonable agreement with Local Group galaxies for a moderately sub-solar metallicity. We also discuss the WR surface density in the central region of NGC 300. Finally, analyses are presented for two apparently single WC stars - #29 (alias WR3, WC5) and #48 (alias WR13, WC4) located close to the nucleus, and at a deprojected radius of 2.5 kpc, respectively. These are among the first models of WR stars in galaxies beyond the Local Group, and are compared with early WC stars in our Galaxy and LMC.Comment: 12 pages, 12 figures, submitted to A&A (includes aa.cls) - version with higher resolution finding charts available from ftp://ftp.star.ucl.ac.uk/pub/pac/ngc300.ps.g

    Sensing the gas metal arc welding process

    Get PDF
    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved

    ATLAS: A High-Cadence All-Sky Survey System

    Full text link
    Technology has advanced to the point that it is possible to image the entire sky every night and process the data in real time. The sky is hardly static: many interesting phenomena occur, including variable stationary objects such as stars or QSOs, transient stationary objects such as supernovae or M dwarf flares, and moving objects such as asteroids and the stars themselves. Funded by NASA, we have designed and built a sky survey system for the purpose of finding dangerous near-Earth asteroids (NEAs). This system, the "Asteroid Terrestrial-impact Last Alert System" (ATLAS), has been optimized to produce the best survey capability per unit cost, and therefore is an efficient and competitive system for finding potentially hazardous asteroids (PHAs) but also for tracking variables and finding transients. While carrying out its NASA mission, ATLAS now discovers more bright (m<19m < 19) supernovae candidates than any ground based survey, frequently detecting very young explosions due to its 2 day cadence. ATLAS discovered the afterglow of a gamma-ray burst independent of the high energy trigger and has released a variable star catalogue of 5×106\times10^{6} sources. This, the first of a series of articles describing ATLAS, is devoted to the design and performance of the ATLAS system. Subsequent articles will describe in more detail the software, the survey strategy, ATLAS-derived NEA population statistics, transient detections, and the first data release of variable stars and transient lightcurves.Comment: 26 pages, 12 figures, submitted to PAS

    Observations of the GRB afterglow ATLAS17aeu and its possible association with GW170104

    Get PDF
    We report the discovery and multi-wavelength data analysis of the peculiar optical transient, ATLAS17aeu. This transient was identified in the skymap of the LIGO gravitational wave event GW170104 by our ATLAS and Pan-STARRS coverage. ATLAS17aeu was discovered 23.1hrs after GW170104 and rapidly faded over the next 3 nights, with a spectrum revealing a blue featureless continuum. The transient was also detected as a fading x-ray source by Swift and in the radio at 6 and 15 GHz. A gamma ray burst GRB170105A was detected by 3 satellites 19.04hrs after GW170104 and 4.10hrs before our first optical detection. We analyse the multi-wavelength fluxes in the context of the known GRB population and discuss the observed sky rates of GRBs and their afterglows. We find it statistically likely that ATLAS17aeu is an afterglow associated with GRB170105A, with a chance coincidence ruled out at the 99\% confidence or 2.6σ\sigma. A long, soft GRB within a redshift range of 1z2.91 \lesssim z \lesssim 2.9 would be consistent with all the observed multi-wavelength data. The Poisson probability of a chance occurrence of GW170104 and ATLAS17aeu is p=0.04p=0.04. This is the probability of a chance coincidence in 2D sky location and in time. These observations indicate that ATLAS17aeu is plausibly a normal GRB afterglow at significantly higher redshift than the distance constraint for GW170104 and therefore a chance coincidence. However if a redshift of the faint host were to place it within the GW170104 distance range, then physical association with GW170104 should be considered.Comment: 16 pages, 6 figures, accepted to Ap

    The Anomaly in the Candidate Microlensing Event PA-99-N2

    Get PDF
    The lightcurve of PA-99-N2, one of the recently announced microlensing candidates towards M31, shows small deviations from the standard Paczynski form. We explore a number of possible explanations, including correlations with the seeing, the parallax effect and a binary lens. We find that the observations are consistent with an unresolved RGB or AGB star in M31 being microlensed by a binary lens. We find that the best fit binary lens mass ratio is about one hundredth, which is one of most extreme values found for a binary lens so far. If both the source and lens lie in the M31 disk, then the standard M31 model predicts the probable mass range of the system to be 0.02-3.6 solar masses (95 % confidence limit). In this scenario, the mass of the secondary component is therefore likely to be below the hydrogen-burning limit. On the other hand, if a compact halo object in M31 is lensing a disk or spheroid source, then the total lens mass is likely to lie between 0.09-32 solar masses, which is consistent with the primary being a stellar remnant and the secondary a low mass star or brown dwarf. The optical depth (or alternatively the differential rate) along the line of sight toward the event indicates that a halo lens is more likely than a stellar lens provided that dark compact objects comprise no less than 15 per cent (or 5 per cent) of haloes.Comment: Latex, 23 pages, 9 figures, in press at The Astrophysical Journa

    The first year of SN 2004dj in NGC 2403

    Get PDF
    New BVRI photometry and optical spectroscopy of the Type IIp supernova 2004dj in NGC 2403, obtained during the first year since discovery, are presented. The progenitor cluster, Sandage 96, is also detected on pre-explosion frames. The light curve indicates that the explosion occured about 30 days before discovery, and the plateau phase lasted about +110 \pm 20 days after that. The plateau-phase spectra have been modelled with the SYNOW spectral synthesis code using H, NaI, TiII, ScII, FeII and BaII lines. The SN distance is inferred from the Expanding Photosphere Method and the Standard Candle Method applicable for SNe IIp. They resulted in distances that are consistent with each other as well as earlier Cepheid- and Tully-Fisher distances. The average distance, D = 3.47 \pm 0.29 Mpc is proposed for SN 2004dj and NGC 2403. The nickel mass produced by the explosion is estimated as 0.02 \pm 0.01 M_o. The SED of the progenitor cluster is reanalysed by fitting population synthesis models to our observed BVRI data supplemented by U and JKH magnitudes from the literature. The chi^2-minimization revealed a possible "young" solution with cluster age T_{cl} = 8 Myr, and an "old" solution with T_{cl} = 20 - 30 Myr. The "young" solution would imply a progenitor mass M > 20 M_o, which is higher than the previously detected progenitor masses for Type II SNe.Comment: 19 pages, accepted in MNRA

    The chemical evolution of the solar neighbourhood

    Get PDF
    Recent models of galactic chemical evolution account for updated evolutionary models of massive stars (with special emphasis on stellar winds) and for the effects of intermediate mass and massive binaries. The results are summarised. We also present a critical discussion on possible effects of stellar rotation on overall galactic chemical evolutionary simulations.Comment: 12 pages, 3 figures, Pacific Rim Conference, Xi'an, China, 11-17 July 200

    A large atomic hydrogen shell in the outer Galaxy: SNR or stellar wind bubble?

    Full text link
    We report the detection of a ring like HI structure toward l=90.0, b=2.8 with a velocity of v_LSR=-99 km/s. This velocity implies a distance of d=13 kpc, corresponding to a Galactocentric radius of R_gal=15 kpc. The l-v_LSR diagram implies an expansion velocity of v_exp ~ 15 km/s for the shell. The structure has an oblate, irregular shell-like appearance which surrounds weak infrared emission as seen in the 60 micrometer IRAS data. At a distance of 13 kpc the size of the object is about 110 x 220 pc and placed 500 pc above the Galactic plane with a mass of 1e5 solar mass. An expanding shell with such a high mass and diameter cannot be explained by a single supernova explosion or by a single stellar wind bubble. We interpret the structure as a relic of a distant stellar activity region powered by the joint action of strong stellar winds from early type stars and supernova explosions.Comment: Accepted for publication by The Astrophysical Journal, 5 Pages, 4 Figure

    The Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope

    Full text link
    Measurements of the dark energy equation-of-state parameter, ww, have been limited by uncertainty in the selection effects and photometric calibration of z<0.1z<0.1 Type Ia supernovae (SNe Ia). The Foundation Supernova Survey is designed to lower these uncertainties by creating a new sample of z<0.1z<0.1 SNe Ia observed on the Pan-STARRS system. Here, we combine the Foundation sample with SNe from the Pan-STARRS Medium Deep Survey and measure cosmological parameters with 1,338 SNe from a single telescope and a single, well-calibrated photometric system. For the first time, both the low-zz and high-zz data are predominantly discovered by surveys that do not target pre-selected galaxies, reducing selection bias uncertainties. The z>0.1z>0.1 data include 875 SNe without spectroscopic classifications and we show that we can robustly marginalize over CC SN contamination. We measure Foundation Hubble residuals to be fainter than the pre-existing low-zz Hubble residuals by 0.046±0.0270.046 \pm 0.027 mag (stat+sys). By combining the SN Ia data with cosmic microwave background constraints, we find w=0.938±0.053w=-0.938 \pm 0.053, consistent with Λ\LambdaCDM. With 463 spectroscopically classified SNe Ia alone, we measure w=0.933±0.061w=-0.933\pm0.061. Using the more homogeneous and better-characterized Foundation sample gives a 55% reduction in the systematic uncertainty attributed to SN Ia sample selection biases. Although use of just a single photometric system at low and high redshift increases the impact of photometric calibration uncertainties in this analysis, previous low-zz samples may have correlated calibration uncertainties that were neglected in past studies. The full Foundation sample will observe up to 800 SNe to anchor the LSST and WFIRST Hubble diagrams.Comment: 30 pages, 17 figures, accepted by Ap
    corecore