176 research outputs found

    Unconventional cosmology on the (thick) brane

    Full text link
    We consider the cosmology of a thick codimension 1 brane. We obtain the matching conditions leading to the cosmological evolution equations and show that when one includes matter with a pressure component along the extra dimension in the brane energy-momentum tensor, the cosmology is of non-standard type. In particular one can get acceleration when a dust of non-relativistic matter particles is the only source for the (modified) Friedman equation. Our equations would seem to violate the conservation of energy-momentum from a 4D perspective, but in 5D the energy-momentum is conserved. One could write down an effective conserved 4D energy-momentum tensor attaching a ``dark energy'' component to the energy-momentum tensor of matter that has pressure along the extra dimension. This extra component could, on a cosmological scale, be interpreted as matter-coupled quintessence. We comment on the effective 4D description of this effect in terms of the time evolution of a scalar field (the 5D radion) coupled to this kind of matter.Comment: 9 pages, v2. eq.(17) corrected, comments on effective theory change

    (4aS,4bR,7R,10aS)-3,7-Dimethyl-10a-(propan-2-yl)-1,4,4a,4b,5,6,7,8,10,10a-deca­hydro­phenanthrene-1,4-dione

    Get PDF
    In the title compound, C19H26O2, the A ring adopts a chair conformation, whereas the B and C rings both adopt distorted half-chair conformations with the quaternary C atom common to both rings lying 0.577 (3) and 0.648 (3) Å out of the approximate plane defined by the remaining five C atoms (r.m.s. deviations = 0.1386 and 0.1156 Å) for the B and C rings, respectively. Mol­ecules are assembled in the crystal through C—H⋯O inter­actions involving both carbonyl O atoms, which lead to supra­molecular chains aligned along the b axis

    (4R*,4aS*,4bS*,5R*,10aR*)-4-Hy­droxy-4a,5-dimethyl-2-(propan-2-yl)-1,4,4a,4b,5,6,7,8,10,10a-deca­hydro­phenan­thren-1-one

    Get PDF
    In the title compound, C19H28O2, the A ring adopts a chair conformation. Both the B and C rings adopt envelope conformations with the C atoms common to both rings and adjacent to the carbonyl and hydroxyl groups, respectively, lying 0.604 (3) and 0.634 (3) Å out of the mean planes defined by the remaining five C atoms of rings B and C, respectively (r.m.s. deviations = 0.0100 and 0.0157 Å, respectively). The formation of linear supra­molecular C(7) chains along the a axis mediated by hy­droxy-O—H⋯O(carbon­yl) hydrogen bonds is the most prominent feature of the crystal packing

    Nonlinear electrodynamics and CMB polarization

    Full text link
    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα=(2.4±1.9)\Delta \alpha = (-2.4 \pm 1.9)^\circ. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L(X/Λ4)δ1  XL\sim (X/\Lambda^4)^{\delta - 1}\; X , where X=1/4FαβFαβX=1/4 F_{\alpha\beta} F^{\alpha \beta}, and δ\delta the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (xx)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.Comment: 17 pages, 2 figures, minor changes, references adde

    Clinical presentation of pertussis in fully immunized children in Lithuania

    Get PDF
    BACKGROUND: In Lithuania, the vaccination coverage against pertussis is high. Nevertheless, there is a significant increase in pertussis cases in fully immunized children. The aim of our study was to determine the frequency of classical symptoms of laboratory confirmed pertussis and describe its epidemiology in children fully vaccinated against pertussis. METHODS: From May to December 2001, 70 children aged 1 month to 15 years, suffering from prolonged cough were investigated in the Centre of Paediatrics, Vilnius University Children's Hospital. The collected information included personal data, vaccination history, clinical symptoms of the current illness, and treatment before hospitalization. At the admission to the hospital blood samples were taken from all studied children for Bordetella pertussis IgM and IgA. RESULTS: A total of 53 (75.7%) of the 70 recruited patients with prolonged cough showed laboratory evidence of pertussis. 32 of them were fully vaccinated with whole cell pertussis vaccine (DTP). The age of fully vaccinated patients varied from 4 to 15 years (average 10.9 ± 3.1; median 11). The time period between the last vaccination dose (fourth) and the clinical manifestation of pertussis was 2.6–13 years (average 8.9 ± 3.0; median 9). More than half of the children before the beginning of pertussis were in contact with persons suffering from long lasting cough illness in the family, school or day-care center. The mean duration from onset of pertussis symptoms until hospitalization was 61.4 ± 68.3 days (range, 7 to 270 days; median 30). For 11 patients who had had two episodes (waves) of coughing, the median duration of cough was 90 days, and for 21 with one episode 30 days (p < 0.0002). Most of the children (84.4%) had paroxysmal cough, 31.3% had post-tussive vomiting, 28.1% typical whoop, and 3.1% apnea. Only 15.6% children had atypical symptoms of pertussis. CONCLUSION: Fully vaccinated children fell ill with pertussis at the median of 11 years old, 9 years following pertussis vaccination. More than half of the children could catch pertussis at home, at school or day-care center. Clinical picture of pertussis in previously immunized children is usually characterized by such classical symptoms as prolonged and paroxysmal cough, rarely by whopping and post-tussive vomiting, and very rarely by apnea

    Modular Composition of Gene Transcription Networks

    Get PDF
    Predicting the dynamic behavior of a large network from that of the composing modules is a central problem in systems and synthetic biology. Yet, this predictive ability is still largely missing because modules display context-dependent behavior. One cause of context-dependence is retroactivity, a phenomenon similar to loading that influences in non-trivial ways the dynamic performance of a module upon connection to other modules. Here, we establish an analysis framework for gene transcription networks that explicitly accounts for retroactivity. Specifically, a module's key properties are encoded by three retroactivity matrices: internal, scaling, and mixing retroactivity. All of them have a physical interpretation and can be computed from macroscopic parameters (dissociation constants and promoter concentrations) and from the modules' topology. The internal retroactivity quantifies the effect of intramodular connections on an isolated module's dynamics. The scaling and mixing retroactivity establish how intermodular connections change the dynamics of connected modules. Based on these matrices and on the dynamics of modules in isolation, we can accurately predict how loading will affect the behavior of an arbitrary interconnection of modules. We illustrate implications of internal, scaling, and mixing retroactivity on the performance of recurrent network motifs, including negative autoregulation, combinatorial regulation, two-gene clocks, the toggle switch, and the single-input motif. We further provide a quantitative metric that determines how robust the dynamic behavior of a module is to interconnection with other modules. This metric can be employed both to evaluate the extent of modularity of natural networks and to establish concrete design guidelines to minimize retroactivity between modules in synthetic systems.United States. Air Force Office of Scientific Research (FA9550-12-1-0129

    Enzyme sequestration as a tuning point in controlling response dynamics of signalling networks

    Get PDF
    Signalling networks result from combinatorial interactions among many enzymes and scaffolding proteins. These complex systems generate response dynamics that are often essential for correct decision-making in cells. Uncovering biochemical design principles that underpin such response dynamics is a prerequisite to understand evolved signalling networks and to design synthetic ones. Here, we use in silico evolution to explore the possible biochemical design space for signalling networks displaying ultrasensitive and adaptive response dynamics. By running evolutionary simulations mimicking different biochemical scenarios, we find that enzyme sequestration emerges as a key mechanism for enabling such dynamics. Inspired by these findings, and to test the role of sequestration, we design a generic, minimalist model of a signalling cycle, featuring two enzymes and a single scaffolding protein. We show that this simple system is capable of displaying both ultrasensitive and adaptive response dynamics. Furthermore, we find that tuning the concentration or kinetics of the sequestering protein can shift system dynamics between these two response types. These empirical results suggest that enzyme sequestration through scaffolding proteins is exploited by evolution to generate diverse response dynamics in signalling networks and could provide an engineering point in synthetic biology applications

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income&nbsp;countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was &lt;1.1 kg m–2 in the vast majority of&nbsp;countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified
    corecore