5 research outputs found

    Influence of Candidate Genes on Attention Problems in Children: A Longitudinal Study

    Get PDF
    Attention problems form one of the core characteristics of Attention-Deficit Hyperactive Disorder (ADHD), a multifactorial neurodevelopmental disorder. From twin research it is clear that genes play a considerable role in the etiology and in the stability of ADHD in childhood. Association studies have focused on genes involved in the dopaminergic and serotoninergic systems, but with inconclusive results. This study investigated the effect of 26 Single Nucleotide Polymorphisms (SNPs) in genes encoding for serotonin receptors 2A (HTR2A), Catechol-O-Methyltransferase (COMT), Tryptophane Hydroxylase type 2 (TPH2), and Brain Derived Neurotrophic Factor (BDNF). Attention problems (AP) were assessed by parental report at ages 3, 7, 10, and 12 years in more than 16,000 twin pairs. There were 1148 genotyped children with AP data. We developed a longitudinal framework to test the genetic association effect. Based on all phenotypic data, a longitudinal model was formulated with one latent factor loading on all AP measures over time. The broad heritability for the AP latent factor was 82%, and the latent factor explained around 55% of the total phenotypic variance. The association of SNPs with AP was then modeled at the level of this factor. None of the SNPs showed a significant association with AP. The lowest p-value was found for the rs6265 SNP in the BDNF gene (p = 0.035). Overall, our results suggest no evidence for a role of these genes in childhood AP

    Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies

    Get PDF
    First published: 16 February 202

    Associations between Attention-Deficit/Hyperactivity Disorder and various eating disorders: A Swedish nationwide population study using multiple genetically informative approaches

    Get PDF
    Background Although attention-deficit hyperactivity/impulsivity disorder (ADHD) and eating disorders (EDs) frequently co-occur, little is known about the shared etiology. In this study we comprehensively investigated the genetic association between ADHD and various EDs, including anorexia nervosa (AN) and other EDs (OED, including bulimia nervosa [BN]). Methods We applied different genetically informative designs to register-based information of a Swedish nationwide population (N=3,550,118). We first examined the familial co-aggregation of clinically diagnosed ADHD and EDs across multiple types of relatives. We then applied quantitative genetic modeling in full-sisters and maternal half-sisters to estimate the genetic correlations between ADHD and EDs. We further tested the associations between ADHD polygenic risk scores (PRS) and ED symptoms, and between AN PRS and ADHD symptoms, in a genotyped population-based sample (N=13,472). Results Increased risk of all types of EDs was found in individuals with ADHD (any ED: OR [95% CI]=3.97 [3.81-4.14], AN: 2.68 [2.15-2.86], OED: 4.66 [4.47-4.87], BN: 5.01 [4.63-5.41]) and their relatives compared to individuals without ADHD and their relatives. The magnitude of the associations reduced as the degree of relatedness decreased, suggesting shared familial liability between ADHD and EDs. Quantitative genetic models revealed stronger genetic correlation of ADHD with OED (0.37 [0.31-0.42]) than with AN (0.14 [0.05-0.22]). ADHD PRS correlated positively with ED symptom measures overall and sub-scales “drive for thinness” and “body dissatisfaction”, despite small effect sizes. Conclusions We observed stronger genetic association with ADHD for non-AN EDs than AN, highlighting specific genetic correlation beyond a general genetic factor across psychiatric disorders

    Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index

    No full text
    The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant associations (P-values <5 × 10-5, Bonferroni-corrected P<0.05) for nine SNP alleles at three independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; Poverall: 2.47 × 10-06/Pfemales: 3.45 × 10-07/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation
    corecore