167 research outputs found

    Neuroprotective Effects of Calmodulin Peptide 76-121aa: Disruption of Calmodulin Binding to Mutant Huntingtin

    Get PDF
    Huntington's disease (HD) is a neurodegenerative disease caused by mutant huntingtin protein containing an expanded polyglutamine tract, which may cause abnormal protein–protein interactions such as increased association with calmodulin (CaM). We previously demonstrated in HEK293 cells that a peptide containing amino acids 76-121 of CaM (CaM-peptide) interrupted the interaction between CaM and mutant huntingtin, reduced mutant huntingtin-induced cytotoxicity and reduced transglutaminase (TG)-modified mutant huntingtin. We now report that adeno-associated virus (AAV)-mediated expression of CaM-peptide in differentiated neuroblastoma SH-SY5Y cells, stably expressing an N-terminal fragment of huntingtin containing 148 glutamine repeats, significantly decreases the amount of TG-modified huntingtin and attenuates cytotoxicity. Importantly, the effect of the CaM-peptide shows selectivity, such that total TG activity is not significantly altered by expression of CaM-peptide nor is the activity of another CaM-dependent enzyme, CaM kinase II. In vitro, recombinant exon 1 of huntingtin with 44 glutamines (htt-exon1-44Q) binds to CaM-agarose; the addition of 10 µM of CaM-peptide significantly decreases the interaction of htt-exon1-44Q and CaM but not the binding between CaM and calcineurin, another CaM-binding protein. These data support the hypothesis that CaM regulates TG-catalyzed modifications of mutant huntingtin and that specific and selective disruption of the CaM-huntingtin interaction is potentially a new target for therapeutic intervention in HD

    Plasma p217+tau versus NAV4694 amyloid and MK6240 tau PET across the Alzheimer's continuum

    Get PDF
    Introduction We evaluated a new Simoa plasma assay for phosphorylated tau (P-tau) at aa217 enhanced by additional p-tau sites (p217+tau). Methods Plasma p217+tau levels were compared to 18F-NAV4694 amyloid beta (Aβ) positron emission tomography (PET) and 18F-MK6240 tau PET in 174 cognitively impaired (CI) and 223 cognitively unimpaired (CU) participants. Results Compared to Aβ− CU, the plasma levels of p217+tau increased 2-fold in Aβ+ CU and 3.5-fold in Aβ+ CI. In Aβ− the p217+tau levels did not differ significantly between CU and CI. P217+tau correlated with Aβ centiloids P = .67 (CI, P = .64; CU, P = .45) and tau SUVRMT P = .63 (CI, P = .69; CU, P = .34). Area under curve (AUC) for Alzheimer's disease (AD) dementia versus Aβ− CU was 0.94, for AD dementia versus other dementia was 0.93, for Aβ+ versus Aβ− PET was 0.89, and for tau+ versus tau− PET was 0.89. Discussion Plasma p217+tau levels elevate early in the AD continuum and correlate well with Aβ and tau PET

    Plasma p217+tau versus NAV4694 amyloid and MK6240 tau PET across the Alzheimer\u27s continuum

    Get PDF
    Introduction: We evaluated a new Simoa plasma assay for phosphorylated tau (P-tau) at aa217 enhanced by additional p-tau sites (p217+tau). Methods: Plasma p217+tau levels were compared to 18F-NAV4694 amyloid beta (Aβ) positron emission tomography (PET) and 18F-MK6240 tau PET in 174 cognitively impaired (CI) and 223 cognitively unimpaired (CU) participants. Results: Compared to Aβ− CU, the plasma levels of p217+tau increased 2-fold in Aβ+ CU and 3.5-fold in Aβ+ CI. In Aβ− the p217+tau levels did not differ significantly between CU and CI. P217+tau correlated with Aβ centiloids P =.67 (CI, P =.64; CU, P =.45) and tau SUVRMT P =.63 (CI, P =.69; CU, P =.34). Area under curve (AUC) for Alzheimer\u27s disease (AD) dementia versus Aβ− CU was 0.94, for AD dementia versus other dementia was 0.93, for Aβ+ versus Aβ− PET was 0.89, and for tau+ versus tau− PET was 0.89. Discussion: Plasma p217+tau levels elevate early in the AD continuum and correlate well with Aβ and tau PET

    Time Trends of Cerebrospinal Fluid Biomarkers of Neurodegeneration in Idiopathic Normal Pressure Hydrocephalus

    Get PDF
    Background: Longitudinal changes in cerebrospinal fluid (CSF) biomarkers are seldom studied. Furthermore, data on biomarker gradient between lumbar (L-) and ventricular (V-) compartments seems to be discordant. Objective: To examine alteration of CSF biomarkers reflecting Alzheimer's disease (AD)-related amyloid-beta (A beta) aggregation, tau pathology, neurodegeneration, and early synaptic degeneration by CSF shunt surgery in idiopathic normal pressure hydrocephalus (iNPH) in relation to AD-related changes in brain biopsy. In addition, biomarker levels in L- and V-CSF were compared. Methods: L-CSF was collected prior to shunt placement and, together with V-CSF, 3-73 months after surgery. Thereafter, additional CSF sampling took place at 3, 6, and 18 months after the baseline sample from 26 iNPH patients with confirmed A beta plaques in frontal cortical brain biopsy and 13 iNPH patients without A beta pathology. CSF Amyloid-beta(42) (A beta(42)), total tau (T-tau), phosphorylated tau (P-tau(181)), neurofilament light (NFL), and neurogranin (NRGN) were analyzed with customized ELISAs. Results: All biomarkers but A beta(42) increased notably by 140-810% in L-CSF after CSF diversion and then stabilized. A beta(42) instead showed divergent longitudinal decrease between A beta-positive and -negative patients in L-CSF, and thereafter increase in A beta-negative iNPH patients in both L- and V-CSF. All five biomarkers correlated highly between V-CSF and L-CSF (A beta(42) R = 0.87, T-tau R = 0.83, P-tau R = 0.92, NFL R = 0.94, NRGN R = 0.9; all p < 0.0001) but were systematically lower in V-CSF (A beta(42) 14 %, T-tau 22%, P-tau 20%, NFL 32%, NRGN 19%). With APOE genotype-grouping, only A beta(42) showed higher concentration in non-carriers of allele epsilon 4. Conclusion: Longitudinal follow up shows that after an initial post-surgery increase, T-tau, P-tau, and NRGN are stable in iNPH patients regardless of brain biopsy A beta pathology, while NFL normalized toward its pre-shunt levels. A beta(42) as biomarker seems to be the least affected by the surgical procedure or shunt and may be the best predictor of AD risk in iNPH patients. All biomarker concentrations were lower in V-than L-CSF yet showing strong correlations.Peer reviewe

    An integrated multi-study analysis of intra-subject variability in cerebrospinal fluid amyloid-β concentrations collected by lumbar puncture and indwelling lumbar catheter

    Get PDF
    INTRODUCTION: Amyloid-β (Aβ) has been investigated as a diagnostic biomarker and therapeutic drug target. Recent studies found that cerebrospinal fluid (CSF) Aβ fluctuates over time, including as a diurnal pattern, and increases in absolute concentration with serial collection. It is currently unknown what effect differences in CSF collection methodology have on Aβ variability. In this study, we sought to determine the effect of different collection methodologies on the stability of CSF Aβ concentrations over time. METHODS: Grouped analysis of CSF Aβ levels from multiple industry and academic groups collected by either lumbar puncture (n=83) or indwelling lumbar catheter (n=178). Participants were either placebo or untreated subjects from clinical drug trials or observational studies. Participants had CSF collected by lumbar puncture or lumbar catheter for quantitation of Aβ concentration by enzyme linked immunosorbent assay. Data from all sponsors was converted to percent of the mean for Aβ40 and Aβ42 for comparison. Repeated measures analysis of variance was performed to assess for factors affecting the linear rise of Aβ concentrations over time. RESULTS: Analysis of studies collecting CSF via lumbar catheter revealed tremendous inter-subject variability of Aβ40 and Aβ42 as well as an Aβ diurnal pattern in all of the sponsors' studies. In contrast, Aβ concentrations from CSF samples collected at two time points by lumbar puncture showed no significant differences. Repeated measures analysis of variance found that only time and draw frequency were significantly associated with the slope of linear rise in Aβ40 and Aβ42 concentrations during the first 6 hours of collection. CONCLUSIONS: Based on our findings, we recommend minimizing the frequency of CSF draws in studies measuring Aβ levels and keeping the frequency standardized between experimental groups. The Aβ diurnal pattern was noted in all sponsors' studies and was not an artifact of study design. Averaging Aβ concentrations at each time point is recommended to minimize the effect of individual variability. Indwelling lumbar catheters are an invaluable research tool for following changes in CSF Aβ over 24-48 hours, but factors affecting Aβ concentration such as linear rise and diurnal variation need to be accounted for in planning study designs

    Two-year prognostic utility of plasma p217+tau across the Alzheimer’s continuum

    Get PDF
    Background: Plasma p217+tau has shown high concordance with cerebrospinal fluid (CSF) and positron emission tomography (PET) measures of amyloid- (A ) and tau in Alzheimer’s Disease (AD). However, its association with longitudinal cognition and comparative performance to PET A and tau in predicting cognitive decline are unknown. Objectives: To evaluate whether p217+tau can predict the rate of cognitive decline observed over two-year average follow-up and compare this to prediction based on A (18F-NAV4694) and tau (18F-MK6240) PET. We also explored the sample size required to detect a 30% slowing in cognitive decline in a 2-year trial and selection test cost using p217+tau (pT+) as compared to PET A (A+) and tau (T+) with and without p217+tau pre-screening. Design: A prospective observational cohort study. Setting: Participants of the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and Australian Dementia Network (ADNeT). Participants: 153 cognitively unimpaired (CU) and 50 cognitively impaired (CI) individuals. Measurements: Baseline p217+tau Simoa assay 18F-MK6240 tau-PET and 18F-NAV4694 A -PET with neuropsychological follow-up (MMSE, CDR-SB, AIBL-PACC) over 2.4 ± 0.8 years. Results: In CI, p217+tau was a significant predictor of change in MMSE ( = −0.55, p \u3c 0.001) and CDR-SB ( =0.61, p \u3c 0.001) with an effect size similar to A Centiloid (MMSE = −0.48, p = 0.002; CDR-SB = 0.43, p = 0.004) and meta-temporal (MetaT) tau SUVR (MMSE: = −0.62, p \u3c 0.001; CDR-SB: = 0.65, p \u3c 0.001). In CU, only MetaT tau SUVR was significantly associated with change in AIBL-PACC ( = −0.22, p = 0.008). Screening pT+ CI participants into a trial could lead to 24% reduction in sample size compared to screening with PET for A+ and 6–13% compared to screening with PET for T+ (different regions). This would translate to an 81–83% biomarker test cost-saving assuming the p217+tau test cost one-fifth of a PET scan. In a trial requiring PET A+ or T+, p217+tau pre-screening followed by PET in those who were pT+ would cost more in the CI group, compared to 26–38% biomarker test cost-saving in the CU. Conclusions: Substantial cost reduction can be achieved using p217+tau alone to select participants with MCI or mild dementia for a clinical trial designed to slow cognitive decline over two years, compared to participant selection by PET. In pre-clinical AD trials, p217+tau provides significant cost-saving if used as a pre-screening measure for PET A+ or T+ but in MCI/mild dementia trials this may add to cost both in testing and in the increased number of participants needed for testing

    Anti-calmodulins and Tricyclic Adjuvants in Pain Therapy Block the TRPV1 Channel

    Get PDF
    Ca2+-loaded calmodulin normally inhibits multiple Ca2+-channels upon dangerous elevation of intracellular Ca2+ and protects cells from Ca2+-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca2+. Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca2+-uptake via the vanilloid inducible Ca2+-channel/inflamatory pain receptor 1 (TRPV1), which suggests that calmodulin inhibitors may block pore formation and Ca2+ entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced 45Ca2+-uptake at µM concentrations: calmidazolium (broad range)≥trifluoperazine (narrow range)>chlorpromazine/amitriptyline>fluphenazine>>W-7 and W-13 (only partially). Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca2+ or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca2+-uptake in intact TRPV1+ cells, and suggests an extracellular site of inhibition. TRPV1+, inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca2+-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca2+-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca2+-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca2+-channels but not affecting motoneurons

    Transcriptome Analysis of the Hippocampal CA1 Pyramidal Cell Region after Kainic Acid-Induced Status Epilepticus in Juvenile Rats

    Get PDF
    Molecular mechanisms involved in epileptogenesis in the developing brain remain poorly understood. The gene array approach could reveal some of the factors involved by allowing the identification of a broad scale of genes altered by seizures. In this study we used microarray analysis to reveal the gene expression profile of the laser microdissected hippocampal CA1 subregion one week after kainic acid (KA)-induced status epilepticus (SE) in 21-day-old rats, which are developmentally roughly comparable to juvenile children. The gene expression analysis with the Chipster software generated a total of 1592 differently expressed genes in the CA1 subregion of KA-treated rats compared to control rats. The KEGG database revealed that the identified genes were involved in pathways such as oxidative phosporylation (26 genes changed), and long-term potentiation (LTP; 18 genes changed). Also genes involved in Ca2+ homeostasis, gliosis, inflammation, and GABAergic transmission were altered. To validate the microarray results we further examined the protein expression for a subset of selected genes, glial fibrillary protein (GFAP), apolipoprotein E (apo E), cannabinoid type 1 receptor (CB1), Purkinje cell protein 4 (PEP-19), and interleukin 8 receptor (CXCR1), with immunohistochemistry, which confirmed the transcriptome results. Our results showed that SE resulted in no obvious CA1 neuronal loss, and alterations in the expression pattern of several genes during the early epileptogenic phase were comparable to previous gene expression studies of the adult hippocampus of both experimental epileptic animals and patients with temporal lobe epilepsy (TLE). However, some changes seem to occur after SE specifically in the juvenile rat hippocampus. Insight of the SE-induced alterations in gene expression and their related pathways could give us hints for the development of new target-specific antiepileptic drugs that interfere with the progression of the disease in the juvenile age group

    Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum

    Get PDF
    SummaryElucidation of molecular mechanisms that regulate synapse formation is required for the understanding of neural wiring, higher brain functions, and mental disorders. Despite the wealth of in vitro information, fundamental questions about how glutamatergic synapses are formed in the mammalian brain remain unanswered. Glutamate receptor (GluR) δ2 is essential for cerebellar synapse formation in vivo. Here, we show that the N-terminal domain (NTD) of GluRδ2 interacts with presynaptic neurexins (NRXNs) through cerebellin 1 precursor protein (Cbln1). The synaptogenic activity of GluRδ2 is abolished in cerebellar primary cultures from Cbln1 knockout mice and is restored by recombinant Cbln1. Knockdown of NRXNs in cerebellar granule cells also hinders the synaptogenic activity of GluRδ2. Both the NTD of GluRδ2 and the extracellular domain of NRXN1β suppressed the synaptogenic activity of Cbln1 in cerebellar primary cultures and in vivo. These results suggest that GluRδ2 mediates cerebellar synapse formation by interacting with presynaptic NRXNs through Cbln1
    corecore